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A Simple Idea for Learning: Error Correction

We have a training set Sconsisting of P input-output
pairs: S = (X1, y1), (X2, y2), ....(XP , yP ).
A very simple algorithm:
- show each sample in sequence repetitively
- if the output is correct: do nothing
- if the output is -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.
- if the output is +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.
More formally, for sample p:

wi(t + 1) = wi(t) + (yp
i − f(W ′Xp))xp

i

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957).
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The Perceptron Learning Procedure

Theorem: If the classes are linearly separable (i.e. separable by a hyperplane), then
the Perceptron procedure will converge to a solution in a finite number of steps.
Proof: Let’s denote by W ∗ a normalized vector in the direction of a solution. Suppose
all X are within a ball of radius R. Without loss of generality, we replace all Xp

whose yp is -1 by −Xp, and set all yp to 1. Let us now define the margin
M = minpW

∗Xp. Each time there is an error, W.W ∗ increases by at least
X.W ∗ ≥M . This means Wfinal.W

∗ ≥ NM where N is the total number of weight
updates (total number of errors). But, the change in square magnitude of W is
bounded by the square magnitude of the current sample Xp, which is itself bounded
by R2. Therefore, |Wfinal|2 ≤ NR2. combining the two inequalities

Wfinal.W
∗ ≥ NM and |Wfinal| ≤

√
NR, we have

Wfinal.W
∗/|Wfinal| ≥

√

(N)M/R

. Since the left hand side is upper bounded by 1, we deduce

N ≤ R2/M2
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Good News, Bad News

The perceptron learning procedure can learn a linear decision surface, if such a
surface exists that separates the two classes. If no perfect solution exists, the
perceptron procedure will keep wobbling around.
What class of problems is Linearly Separable, and learnable by a Perceptron?
There are many interesting applications where the data can be represented in a way
that makes the classes (nearly) linearly separable: e.g. text classification using “bag of
words” representations (e.g. for spam filtering).
Unfortunately, the really interesting applications are generally not linearly separable.
This is why most people abandonned the field between the late 60’s and the early 80’s.
We will come back to the linear separability problem later.
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Regression, Mean Squared Error

Regression or function approximation is finding a
function that approximates a set of samples as well
as possible.
Classic example: linear regression. We are
given a training set S of input/output pairs S =

{(X1, y1), (X2, y2)....(XP , yP )}, and we must find
the parameters of a linear function that best predicts
the y’s from the X’s in the least square sense. In other
words, we must find the parameter W that minimizes
the quadratic loss function L(W,S):

L(W,S) =
1

P

P
∑

i=1

L(W, yi, Xi)

where the per-sample loss function L(W, yi, Xi) is defined as:

L(W, yi, Xi) =
1

2
(yi −W ′Xi)2
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Regression: Solution

L(W ) =
1

P

P
∑

i=1

1

2
(yi −W ′Xi)2

W ∗ = argminWL(W ) = argminW

1

P

P
∑

i=1

1

2
(yi −W ′Xi)2

At the solution, W satisfies the extremality condition:

dL(W )

dW
= 0

d
[

1
P

∑P

i=1
1
2 (yi −W ′Xi)2

]

dW
= 0

P
∑

i=1

d
[

1
2 (yi −W ′Xi)2

]

dW
= 0
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A digression on multivariate calculus

W : a vector of dimension N . W ′ denotes the transpose of W , i.e. if W is
N × 1 (column vector), W ′ is 1×N (line vector).

F (W ): a multivariate scalar-valued function (an N -dimensional surface in an
N + 1 dimensional space).

dF (W )

dW
=

[

∂F (W )

∂w1
,
∂F (W )

∂w2
, . . .

∂F (W )

∂wN

]

is the gradient of F (W ) with respect to W (it’s a line vector).

The gradient of a function that maps N -dim vectors scalars is a 1×N line
vector.

example 1: linear function: F (W ) = W ′X where X is an N -dim vector:
d(W ′X)

dW
= X ′

example 2: quadratic function F (W ) = (y −W ′X)2 where y is a scalar:
d(y−W ′X)2

dW
= −2(y −W ′X)X ′.
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Regression: Solution

The gradient of L(W) is:

dL(W )

dW
=

P
∑

i=1

d
[

1
2 (yi −W ′Xi)2

]

dW
=

P
∑

i=1

−(yi −W ′Xi)Xi′

The extremality condition becomes:

1

P

P
∑

i=1

−(yi −W ′Xi)Xi′ = 0

Which we can rewrite as:

[

P
∑

i=1

yiXi

]

−
[

P
∑

i=1

XiXi′

]

W = 0
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Regression: Direct Solution

P
∑

i=1

yiXi − [

P
∑

i=1

XiXi′]W = 0

Can be written as:

[
P

∑

i=1

XiXi′]W =
P

∑

i=1

yiXi

This is a linear system that can be solved with a number of traditional numerical
methods (although it may be ill-conditioned or singular).

If the covariance matrix A =
∑P

i=1 XiXi′ is non singular, the solution is:

W ∗ =

[

P
∑

i=1

XiXi′

]−1
P

∑

i=1

yiXi
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Regression: Iterative Solution

Gradient-based minimization: W (t + 1) = W (t)− η dL(W )
dW

where η is a well chosen coefficient (often a scalar, sometimes diagonal matrix with
positive entries, occasionally a full symmetric positive definite matrix).
The k-th component of the gradient of the quadratic loss L(W ) is:

∂L(W )

∂wk

=

P
∑

i=1

−(yi −W (t)′Xi)xi
k

If η is a scalar or a diagonal matrix, we can write the udpate equation for a single

component of W : wk(t + 1) = wk(t) + η
∑P

i=1(y
i −W (t)′Xi)xi

k

This update rules converges for well-chosen, small-enough values of η (more on this
later).

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/16



Regression, Online/Stochastic Gradient

Online gradient descent, aka Stochastic Gradient:

W (t + 1) = W (t)− η
d(W, Y i, Xi)

dW

wk(t + 1) = wk(t) + η(t)(yi −W (t)′Xi)xi
k

No sum! The average gradient is replaced by its instantaneous value.
This is called stochastic gradient descent. In many practical situation it is
enormously faster than batch gradient.
But the convergence analysis of this method is very tricky.
One condition for convergence is that η(t) must be decreased according to a schedule
such that

∑

t η(t)2 converges while
∑

t η(t) diverges.
One possible such sequence is η(t) = η0/t.
We can also use second-order methods, but we will keep that for later.
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Least Mean Squared Error for Classification

We can use the Mean Squared Error criterion with
a linear regressor to perform classification (although
this is clearly suboptimal).
We compute a linear discriminant function
G(W, X) = W ′X and compare it to a threshold T .
If G(W, X) is larger than T , we classify X in class
1, if it is smaller than T , we classify X n class 2.

To compute W , we simply minimize the quadratic loss function

L(W ) =
1

P

P
∑

i=1

1

2
(yi −W ′Xi)2

where yi = +1 if training sample X i is of class 1 and yi = −1 if training
sample Xi is of class 2.

This is called the Adaline algorithm (Widrow-Hoff 1960).
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Linear Classifiers

In multiple dimensions, the linear discriminant function G(W, X) = W ′X partitions
the space into two half-spaces separated by a hyperplane.
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A Richer Class of Functions

What if we know that the process that generated
our samples is non linear? We can use a richer
family of functions, e.g. polynomials, sum of
trigonometric functions....
PROBLEM: if the family of functions is too rich,
we run the risk of overfitting the data. If the fam-
ily is too restrictive we run the risk of not being
able to approximate the training data very well.
QUESTIONS: How can we choose the richness
of the family of functions? Can we predict the per-
formance on new data as a function of the training
error and the richness of the family of functions?
Simply minimizing the training error may not give
us a solution that will do well on new data.
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Learning as Function Estimation

pick a machine G(W, X) parameterized by W . It
can be complicated and non-linear, but it better be
differentiable with respect to W .

pick a per-sample loss function L(Y, G(W, X)).

pick a training set
S = (X1, Y 1), (X2, Y 2), ....(XP , Y P ).

find the W that minimizes
L(W,S) = 1

P

∑

i L(Y i, G(W, Xi))
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Learning as Function Estimation (continued)

If L(Y i, G(W, Xi)) is differentiable with respect to
W , use a gradient-based minimization technique:

W ←W − η
∂L(W )

∂W

or use a stochastic gradient minimization technique:

W ←W − η
∂L(Y i, G(W, Xi))

∂W
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