
MACHINE LEARNING AND

PATTERN RECOGNITION

Srping 2005, Lecture 1a:

Introduction and Basic Concepts

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/15

Before we get started...

Course web site: http://www.cs.nyu.edu/ yann/2005s-V22-0480-006/index.html

Evaluation: Assignements [40%] + final exam [30%] + final project [30%].

Course mailing list (see course’s web site).

Text Books: mainly “Pattern Classification” by Duda, Hart, and Stork, but a
number of other books can be used reference material: “Neural Networks for
Pattern Recognition” by Bishop, and “Element of Statistical Learning” by
Hastie, Tibshirani and Friedman.

... but we will mostly use my own material, augmented by tutorial papers and
resarch papers.

formal prerequisite: linear algebra. You might want to brush up on probability
theory, multivariate calculus (partial derivatives ...), optimization (least square
method...), and the method of Lagrange multipliers for constrained
optimization. We will review those topics in class.

Programming projects: can be done in any language, but I STRONGLY
recommend to use Lush (http://lush.sf.net). Skeleton code in Lush will be
provided for most projects.

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/15

What is Learning?

Learning is acquiring and improving performance through experience.

Pretty much all animals with a central nervous system are capable of learning
(even the simplest ones).

What does it mean for a computer to learn? Why would we want them to learn?
How do we get them to learn?

We want computers to learn when it is too difficult or too expensive to program
them directly to perform a task.

Get the computer to program itself by showing examples of inputs and outputs.

In reality: we will write a “parameterized” program, and let the learning
algorithm find the set of parameters that best approximates the desired function
or behavior.

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/15

Different Types of Learning

Supervised Learning: given training examples of inputs and corresponding
outputs, produce the “correct” outputs for new inputs. Example: character
recognition.

Reinforcement Learning (similar to animal learning): an agent takes inputs from
the environment, and takes actions that affect the environment. Occasionally,
the agent gets a scalar reward or punishment. The goal is to learn to produce
action sequences that maximize the expected reward (e.g. driving a robot
without bumping into obstacles). I won’t talk much about that in this course.

Unsupervised Learning: given only inputs as training, find structure in the
world: discover clusters, manifolds, characterize the areas of the space to which
the observed inputs belong (e.g.: clustering, probability density estimation,
novelty detection, compression, embedding).

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/15

Related Fields

Statistical Estimation: statistical estimation attempts to solve the same problem
as machine learning. Most learning techniques are statistical in nature.

Pattern Recognition: pattern recognition is when the output of the learning
machine is a set of discrete categories.

Neural Networks: neural nets are now one many techniques for statistical
machine learning.

Data Mining: data mining is a large application area for machine learning.

Adaptive Optimal Control: non-linear adaptive control techniques are very
similar to machine learning methods.

Machine Learning methods are an essential ingredient in many fields:
bio-informatics, natural language processing, web search and text classification,
speech and handwriting recognition, fraud detection, financial time-series
prediction, industrial process control, database marketing....

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/15

Applications

handwriting recognition, OCR: reading checks and zipcodes, handwriting
recognition for tablet PCs.

speech recognition, speaker recognition/verification

security: face detection and recognition, event detection in videos.

text classification: indexing, web search.

computer vision: object detection and recognition.

diagnosis: medical diagnosis (e.g. pap smears processing)

adaptive control: locomotion control for legged robots, navigation for mobile
robots, minimizing pollutant emissions for chemical plants, predicting
consumption for utilites...

fraud detection: e.g. detection of “unusual” usage patterns for credit cards or
calling cards.

database marketing: predicting who is more likely to respond to an ad campaign.

(...and the antidote) spam filtering.

games (e.g. backgammon).

Financial prediction (many people on Wall Street use machine learning).
Y. LeCun: Machine Learning and Pattern Recognition – p. 6/15

Demos / Concrete Examples

Handwritten Digit Recognition: supervised learning for classification

Handwritten Word Recognition: weakly supervised learning for classification
with many classes

Face detection: supervised learning for detection (faces against everything else
in the world).

Object Recognition: supervised learning for detection and recognition with
highly complex variabilities

Robot Navigation: supervised learning and reinforcement learning for control.

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/15

Two Kinds of Supervised Learning

Regression: also known as “curve fitting”
or “function approximation”. Learn a
continuous input-output mapping from a
limited number of examples (possibly
noisy).

Classification: outputs are discrete vari-
ables (category labels). Learn a decision
boundary that separates one class from the
other. Generally, a “confidence” is also de-
sired (how sure are we that the input be-
longs to the chosen category).

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/15

Unsupervised Learning

Unsupervised learning comes down to this: if the input looks like the training samples,
output a small number, if it doesn’t, output a large number.

This is a horrendously ill-posed problem in high
dimension. To do it right, we must guess/discover
the hidden structure of the inputs. Methods differ
by their assumptions about the nature of the data.

A Special Case: Density Estimation. Find a
function f such f(X) approximates the
probability density of X , p(X), as well as
possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold
or surface near which the data lives.

Compression/Quantization: discover a function
that for each input computes a compact “code”
from which the input can be reconstructed.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/15

Learning is NOT Memorization

rote learning is easy: just memorize all the training examples and their
corresponding outputs.

when a new input comes in, compare it to all the memorized samples, and
produce the output associated with the matching sample.

PROBLEM: in general, new inputs are different from training samples.

The ability to produce correct outputs or behavior on previously unseen inputs is
called GENERALIZATION.

rote learning is memorization without generalization.

The big question of Learning Theory (and practice): how to get good
generalization with a limited number of examples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/15

A Simple Trick: Nearest Neighbor Matching

Instead of insisting that the input be exactly
identical to one of the training samples, let’s
compute the “distances” between the input and all
the memorized samples (aka the prototypes).

1-Nearest Neighbor Rule: pick the class of the
nearest prototype.

K-Nearest Neighbor Rule: pick the class that has
the majority among the K nearest prototypes.

PROBLEM: What is the right distance measure?

PROBLEM: This is horrendously expensive if the
number of prototypes is large.

PROBLEM: do we have any guarantee that we get
the best possible performance as the number of
training samples increases?

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/15

How Biology Does It

The first attempts at machine learning in the 50’s,
and the development of artificial neural networks
in the 80’s and 90’s were inspired by biology.

Nervous Systems are networks of neurons
interconnected through synapses

Learning and memory are changes in the
“efficacy” of the synapses

HUGE SIMPLIFICATION: a neuron computes a
weighted sum of its inputs (where the weights are
the synaptic efficacies) and fires when that sum
exceeds a threshold.

Hebbian learning (from Hebb, 1947): synaptic
weights change as a function of the pre- and
post-synaptic activities.

orders of magnitude: each neuron has 103 to 105

synapses. Brain sizes (number of neurons): house
fly: 105; mouse: 5.106, human: 1010.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/15

The Linear Classifier

Historically, the Linear Classifier was designed as a highly simplified model of the
neuron (McCulloch and Pitts 1943, Rosenblatt 1957):

y = f(

i=N∑

i=0

wixi)

With f is the threshold function: f(z) = 1 iff
z > 0, f(z) = −1 otherwise. x0 is assumed
to be constant equal to 1, and w0 is interpreted
as a bias.
In vector form: W = (w0, w1....wn), X =
(1, x1...xn):

y = f(W ′X)

The hyperplane W ′X = 0 partitions the space
in two categories. W is orthogonal to the hy-
perplane.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/15

Vector Inputs

With vector-based classifiers such as the linear classifier, we must represent objects in
the world as vectors.
Each component is a measurement or a feature of the the object to be classified.
For example, the grayscale values of all the pixels in an image can be seen as a (very
high-dimensional) vector.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/15

A Simple Idea for Learning: Error Correction

We have a training set Sconsisting of P input-output
pairs: S = (X1, y1), (X2, y2),(XP , yP).
A very simple algorithm:
- show each sample in sequence repetitively
- if the output is correct: do nothing
- if the output is -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.
- if the output is +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.
More formally, for sample p:

wi(t + 1) = wi(t) + (yp
i − f(W ′Xp))xp

i

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957).

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/15

	Before we get started...
	What is Learning?
	Different Types of Learning
	Related Fields
	Applications
	Demos / Concrete Examples
	Two Kinds of Supervised Learning
	Unsupervised Learning
	Learning is NOT Memorization
	A Simple Trick: Nearest Neighbor Matching
	How Biology Does It
	The Linear Classifier
	Vector Inputs
	A Simple Idea for Learning: Error Correction

