Homework 03: Jacobians and the application of Chain Rule.

Yann LeCun
The Courant Institute, New York University

This problem set is designed to practice the application of chain rule and the differentiations of various multivariate functions. This is what you need to do to write the bprop method of a module.

If you know how to compute the derivatives of simple functions, you have all the skills necessary to complete this problem set.

1 Exponential Module

The scalar exponential module maps a scalar variable x to a scalar variable y using the following formula:

$$
y=\exp (-\beta x)
$$

where β is a parameter.

1.1 Question: jacobian with respect to X

Assuming that the partial derivatives of the energy with respect to y is known, give the expression for the partial derivative of the energy with respect to x. To do so, calculate $\frac{\partial y}{\partial x}$, and apply Chain Rule:

$$
\frac{\partial E}{\partial x}=\frac{\partial E}{\partial y} \frac{\partial y}{\partial x}
$$

1.2 Question: jacobian with respect to β

Now calculate the derivative of the energy with respect to β :

$$
\frac{\partial E}{\partial \beta}=\frac{\partial E}{\partial y} \frac{\partial y}{\partial \beta}
$$

2 Component Scaling Module

The scaling module maps an N-dimensional column vector $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\prime}$ to an N-dimensional column vector $Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{\prime}$ with the following formula:

$$
y_{i}=k_{i} x_{i} \quad \forall i \in[1, N] .
$$

where the k_{i} 's are the components of a vector of parameters $K=\left[k_{1}, k_{2}, \ldots, k_{n}\right]$.

2.1 Question: jacobian with respect to X

Assuming that the partial derivatives of the energy with respect to all the y_{i} are known, give the expression for the partial derivative of the energy with respect to the x_{j}. To do so, calculate $\frac{\partial y_{i}}{\partial x_{j}}$, and apply Chain Rule:

$$
\frac{\partial E}{\partial x_{j}}=\sum_{i=1}^{N} \frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{j}}
$$

Hint: $\frac{\partial y_{i}}{\partial x_{j}}$ is equal to 0 for $j \neq i$. you can view the operation on each component $y_{i}=k_{i} x_{i}$ as a separate module operating on scalar values.

2.2 Question: jacobian with respect to K

Now calculate the derivative of the energy with respect to each of the k_{j} 's:

$$
\frac{\partial E}{\partial k_{j}}=\sum_{i=1}^{N} \frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial k_{j}}
$$

hint: $\frac{\partial y_{i}}{\partial k_{j}}$ is equal to 0 for $j \neq i$.

3 Global Scaling Module

The global scaling is similar to the component scaling module, except that it uses a single coefficient to scale all the components of X. It maps an N-dimensional column vector $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\prime}$ to an N-dimensional column vector $Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{\prime}$ with the following formula:

$$
y_{i}=k x_{i} \quad \forall i \in[1, N] .
$$

where the k is a scalar parameters.

3.1 Question: jacobian with respect to X

Assuming that the partial derivatives of the energy with respect to all the y_{i} are known, give the expression for the partial derivative of the energy with respect to the x_{j}. To do so, calculate $\frac{\partial y_{i}}{\partial x_{j}}$, and apply Chain Rule:

$$
\frac{\partial E}{\partial x_{j}}=\sum_{i=1}^{N} \frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{j}}
$$

3.2 Question: jacobian with respect to K

Now calculate the derivative of the energy with respect to k :

$$
\frac{\partial E}{\partial k}=\sum_{i=1}^{N} \frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial k}
$$

Note the difference with the component scaling module.

4 Softmax Module

The so-called softmax module maps an N-dimensional column vector $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\prime}$ to an N-dimensional column vector $Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{\prime}$ with the following formula:

$$
y_{i}=\frac{\exp \left(-\beta x_{i}\right)}{\sum_{j=1}^{N} \exp \left(-\beta x_{j}\right)} \quad \forall i \in[1, N]
$$

where β is a parameter. The softmax module can be used to transform a vector of real numbers into something that looks like a probability distribution: a vector of numbers that are all between 0 and 1 and whose sum is equal to 1 .

4.1 Question: jacobian with respect to X

Assuming that the partial derivatives of the energy with respect to all the y_{i} are known, give the expression for the partial derivative of the energy with respect to the x_{j}. To do so, calculate $\frac{\partial y_{i}}{\partial x_{j}}$, and apply Chain Rule:

$$
\frac{\partial E}{\partial x_{j}}=\sum_{i=1}^{N} \frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{j}}
$$

4.2 Question: jacobian with respect to β

Now calculate the derivative of the energy with respect to β :

$$
\frac{\partial E}{\partial \beta}=\sum_{i=1}^{N} \frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial \beta}
$$

5 Logsum Module

The logsum module maps an N-dimensional vector X to a scalar y with the following formula:

$$
y=-\frac{1}{\beta} \log \left(\sum_{j=1}^{N} \exp \left(-\beta x_{i}\right)\right)
$$

5.1 Question: jacobian with respect to X

Assuming that the partial derivatives of the energy with respect to the y is known, give the expression for the partial derivative of the energy with respect to the x_{j}. To do so, calculate $\frac{\partial y}{\partial x_{j}}$, and apply Chain Rule:

$$
\frac{\partial E}{\partial x_{j}}=\frac{\partial E}{\partial y} \frac{\partial y}{\partial x_{j}}
$$

5.2 Question: jacobian with respect to β

Now calculate the derivative of the energy with respect to β :

$$
\frac{\partial E}{\partial \beta}=\frac{\partial E}{\partial y} \frac{\partial y}{\partial \beta}
$$

