
MACHINE LEARNING AND

PATTERN RECOGNITION

Fall 2006, Lecture 8:

Unsupervised Learning, Density Estimation,

K-Means

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/??

Unsupervised Learning

The basics idea of unsupervised learning: Learn an energy functionE(Y) such that
E(Y) is small ifY is “similar” to the training samples, andE(Y) is large ifY is
“different” from the training samples. What we mean by “similar” and “different” is
somewhat arbitrary and must be defined for each problem.

Probabilistic unsupervised learning: Density
Estimation. Find a functionf suchf(Y)
approximates the empirical probability density ofY ,
p(Y), as well as possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold or
surface that is as close as possible to all the samples.

Compression/Quantization: discover a function that
for each input computes a compact “code” from which
the input can be reconstructed.

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/??

Parametric Density Estimation

Use Maximum Likelihood: Given a modelP (Y |W), find the parameterW that best
“explains” the training samples, i.e. theW that maximizes the likelihood of the
training samplesY 1, Y 2, ...Y P . Assuming that the total data likelihood factorizes into
individual sample likelihoods:

P (Y 1, Y 2, ...Y P |W) =
∏

i

P (Y i|W)

Equivalently, find theW that minimizes the negative log likelihood.

L(W) = −log
∏

i

P (Y i|W) =
∑

i

−logP (Y i|W)

This is calledparametric estimation because we assume that the family of possible
densities is parameterized byW .

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/??

Parametric Density Estimation

AssumingP (Y |W) is the normalized exponential of an energy function:

P (Y |W) =
exp(−βE(Y, W))

∫

exp(−βE(Y, W))dY

and after an irrelevant division byβ, we get the loss function:

L(W) =
∑

i

(

E(Y i, W) +
1

β
log

∫

exp(−βE(Y, W))dY

)

The Maximum A Posteriori Estimate is similar but includes a penalty onW :

L(W) =
∑

i

(

E(Y i, W) +
1

β
log

∫

exp(−βE(Y, W))dY

)

+ H(W)

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/??

Example: Univariate Gaussian

Maximum Likelihood: find the parameters
of a Gaussian that best “explains” the
training samplesy1, y2,yP .

negative log-likelihood of the data (one
dimension):L(m, v) =

−
∑

i log 1√
2πv

exp(− 1
2v (yi − m)2)

L(m, v) =
1

2

∑

i

1

v
(yi − m)2 + log 2πv

Minimize L(m, v) with respect tom andv.

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/??

Example: Univariate Gaussian

Minimize L(m, v) with respect tom

∂L(m, v)

∂m
=

1

2

∑

i

1

v
(yi − m) = 0

Hence,m = 1
P

∑

i yi

Now minimizeL(m, v) with respect tov

∂L(m, v)

∂v
=

1

2

∑

i

(

−
1

v2
(yi − m)2 +

1

v

)

= 0

Hencev = 1
P

∑

i(y
i − m)2

surprise-surprise: The maximum likelihood estimates of the mean and variance
of a Gaussian are the mean and variance of the samples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/??

Example: Multi-variate Gaussian

Maximum Likelihood: find the parameters of a Gaussian that best “explains” the
training samplesY 1, Y 2,Y P .
The negative log-likelihood of the data (M is a vector,V is a matrix):

L(M, V) = −
∑

i

log
(

|2πV |−1/2 exp(−1/2(Y i − M)′V −1(Y i − M))
)

L(M, V) =
1

2

∑

i

(Y i − M)′V −1(Y i − M) − log |V −1| + log(2π)

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/??

Multi-variate Gaussian (continued)

L(M, V) =
1

2

∑

i

(Y i − M)′V −1(Y i − M) − log |V −1| + log(2π)

∂L(M, V)

∂M
=

1

2

∑

i

V −1(Y i − M) = 0

Hence,M = 1
P

∑

i Y i Now minimizeL(M, V) with respect toV −1

∂L(M, V)

∂V −1
=

1

2

∑

i

(

(Y i − M)(Y i − M)′ − V
)

(using the fact∂ log |V −1|
∂V −1 = V ′).

HenceV = 1
P

∑

i(Y
i − M)(Y i − M)′

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/??

Non-Parametric Methods: Parzen Windows

The sample distribution can be seen as a
bunch of delta functions.Idea: make it
smooth.

Place a “bump” around each training
sampleY i.

example: Gaussian bump
gi(Y) = 1

Z exp(−K||Y − Y i||2) whereZ

is the Gaussian normalization constant.

The density isP (Y) = 1
P ∼P

i=1 gi(Y)

It’s simple, but it’s expensive.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/??

Dimensionality Reduction

A slightly simpler problem than full-fledged density estimation: Find a
low-dimensional surface (a manifold) that is as close as possible to the training
samples.

Example 1: reducing the number of input
variables (features) to a classifier so as to reduce
the over-parameterization problem.

Example 2: images of human faces can be seen as
vectors in a very high dimensional space. Actual
faces reside in a small subspace of that large
space. If we had a parameterization of the
manifold of all possible faces, we could generate
new faces or interpolate between faces by moving
around that surface. (this has been done, see
Blanz and Vetter “Face recognition based on
fitting a 3D morphable model” IEEE Trans. PAMI
25:1063-1074, 2003).

Example 3: Parameterizing the possible shapes of
a mouth so we can make a simulated human speak
(see http://www.vir2elle.com).

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/??

Linear Subspace: Principal Component Analysis

Problem: find alinear manifold that best approximates the samples. In other words,
find a linear projectionP such that the projection of the samples are as close as
possible to the originals.

We have a training setY 1...Y P . We assume all
the components have zero mean. If not we center
the vectors by subtracting the mean from each
component.

Question: what is the direction that we can
remove (project out) while minimally affecting
the training set.

Let U be a unit vector in that dimension

Removing the dimension in the direction ofU will

cost usC =
∑P

i=1(Y
i′U)2 (the square length of

the projections ofY i onU).

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/??

Principal Component Analysis

Removing the dimension in the direction ofU will cost usC =
∑P

i=1(Y
i′U)2

(the square length of the projections ofY i onU).

C =
∑P

i=1 U ′Y iY i′U = [U ′ ∑P
i=1 Y iY i′]U Q: How do we pickU so as to

minimize the quantity in the bracket?

The covariance matrixA =
∑P

i=1 Y iY i′ can be diagonalized:A = QΛQ′,
whereQ is a rotation matrix, whose linesQi are the normalized (and mutually
orthogonal) eigenvectors ofA, andΛ a diagonal matrix that contain the
(positive) eigenvalues ofA.

It is easy to see that the unit vectorU that minimizesU ′QΛQ′ is aligned with
the eigenvector of smallest eigenvalue ofA.

To eliminate more directions, we can repeat the process while remaining in the
orthogonal space of the previously found directions.

Practically: we simply find firstK eigenvectors ofA (associated with theK
largest eigenvalues) and keep those.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/??

Principal Component Analysis (PCA)

step 1: We have a training setY 1...Y P whose component variables have zero
mean (or have been centered).

step 2: compute the covariance matrixA = 1
P

∑P
i=1 Y iY i′

step 3: diagonalize the covariance matrix:A = Q′ΛQ,

step 4: Construct the matrixQk whose rows are the the eigenvectors of largest
eigenvalues ofA (a subset of rows ofQ).

Multiplying a vector byQk gives the projections of the vector onto the principal
eigenvectors ofA. We can Now compute thek PCA features of any vectorY as
PCAk(Y) = QkY .

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/??

K-Means Clustering

Idea: find K prototype vectors that “best represent” the
training samplesY 1...Y P . More precisely, findK vec-
torsM1, ...MK , such that

L =
P

∑

i=1

K
min
k=1

||Y i − Mk||2

is minimized. In other words, theMk are chosen such
that the error caused by replacing anyY i by its closest
prototype is minimized.
Application 1:Discovering hidden categories.
Application 2:Lossy data compression: to code a vector,
find the prototypeMk that is closest to it, and transmitk.
This process is calledVector Quantization.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/??

Algorithm for K-Means Clustering

Minimizing L: ∂L
∂Mk = 2

∑

i∈Sk(Mk − Y i) = 0 whereSk is the set ofi for

whichMk is the closest prototype toY i. We get:

Mk =
1

|Sk|

∑

i∈Sk

Y i

where|Sk| is the number of elements inSk.

Algorithm:

initialize theMk (e.g. randomly).
repeat until convergence:

for eachk compute the setSk, the set of alli for which ||Mk − Y i||2 is
smaller than all other||M j − Y i||2.

computeMk = 1
|Sk|

∑

i∈Sk Y i

iterate

Naturally, this algorithm works with any distance measure.

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/??

Hierarchical K-Means

Problem:Sometimes, K-Means may get stuck in very bad solutions (e.g. some
prototypes have no samples assigned to them).
This is often caused by inappropriate initialization of theprototypes.
Cure: Hierarchical K-Means.
Main Idea:: run K-Means withK = 2, then run again K-Means withK = 2 on each
of the two subsets of samples (those assigned to prototype 1,and those assigned to
prototype 2).
What do we use K-Means for?: data compression (vector quantization)
initialization of RBF nets of Mixtures of Gaussian.

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/??

	Unsupervised Learning
	Parametric Density Estimation
	Parametric Density Estimation
	Example: Univariate Gaussian
	Example: Univariate Gaussian
	Example: Multi-variate Gaussian
	Multi-variate Gaussian (continued)
	Non-Parametric Methods: Parzen Windows
	Dimensionality Reduction
	Linear Subspace: Principal Component Analysis
	Principal Component Analysis
	Principal Component Analysis (PCA)
	K-Means Clustering
	Algorithm for K-Means Clustering
	Hierarchical K-Means

