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Probabilistic Framework for Learning

Given a set of observatiods = [( X!, Y1), (X2,Y?)...(XT,YTP)] (training set), we
want to produce a model that predictfrom X. More precisely, we want to estimate a
function that computes the conditional distributiBiY | X) for any givenX, in a way
that is consistent with the observatiasisWe write this functionP (Y | X, S)

STEP 1, architecture and parameterizatioe assume
that P(Y'| X, S) can be decomposed into two parts:

PY|X,S)= [ P(Y|X,W)P(W|S)dW
1) X YIX.8) = [ POIXW)POVIS)
1 Our estimate ofP(Y' | X, W) will taken among damily
of functions {G(W, Y, X ),VWW}, parameterized by a
G(V,x,w) parameter vectolV.
This family of functions, which we will call thearchi-
W tecture of the learning machine, must be chosen care-
fully for each particular problem. Examples of architec-
v y tures include logistic regressors, neural networks, Hdde

Markov Models, and literally hundreds of others.
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Energy Function

STEP 2, energy functionfor convenience we will
often defineG(W, Y, X) as the normalized

Y Y exponential of arnergy function E(W, Y, X):
eXp(_ﬁE(Wa YaX))
PY|IXW)~GW,Y, X) =
I ( X wy~ Gl ) Zg(W, X, B)
‘r

E(":":N) X where( is an arbitrary positive constant, and
Zrp(W, X, () is a normalization term

E(vxw)

Zu(W, X, ) = / exp(—BE(W.Y, X))dY

X Y

(often called theoartition function) which ensures
that our estimate oP (Y| X, W) is normalized.
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Probabilistic Framework for Learning

PY|X,S) = /P(Y|X, W)P(W|S)dW

STEP 3, learning P(W|S) is the result of a

learning procedure that assigns a probability (or
an energy) to each possible valuelfas a
function of the training set.

Awls)

v Intuitively, the learning procedure will assign high
probabilities to values offl” that assign high com-
bined probability (low combined energy) to the ob-

W, served data.
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Assigning Probsto Parameter Values

STEP 3.1, likelinood of observationsLet us define
X=(X',X%...X?), and Y= (Y',Y?...YP)
Using Bayes inversion while keeping all the terms condémionX’, we can write:

PYIX,W)P(W|X)

PW|S)=PW|V,X) = POYI)

where the denominator is a normalization term:

P(Y|X) = /P(y\X,W)P(W\X)dW

that ensures thagt P(W|S)dW = 1.
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Likelihood of the Observations

STEP 3.2, sample independenc&o computeP (Y |X, W), we use the assumption that
it can be written as a product of terms that each depend orgéediaining sample. In

other words, we see the drawing of the samplEs, Y*)'s as independent events:

A (¥ow)
P_“.'.'.'.{‘}“ ) p|x,w) =T Pviixi,w) = [[cow, v, X7)
Using the definition foiG:
G(Y,xv)
wl POIX, W) = exp(—f ;[E(W, Y, X@')+% log Zg(W, X, 3)])
X, y°

X' y' withZg(W, X,8) = [exp(-BE(W,Y, X))dY.
Xt y:l.
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Priors, Regularizers, Penalty terms

VIX,W)P(W|X)
PY|X)

STEP 3.3, choosing a regularizeiThe termP (W |X) is an arbitrary prior distribution
over the values ol that we can choose freely. In the following, we will drop the
dependency o&’. We will often represent this prior as the normalized expiad of

apenalty termor regularizer H(W):

P(W|S) = P(W[Y, &) = 2L

P(W) = % exp(—BH(W))

Parameters that produce low values of the regular-
izer will be favored over parameters that produce

W
A 1 « H(N) large values. Therefore our choice or regularizer
will determine what we consider “good” models
W (e.g. simple, smooth, well behaved) for which the

reqularizer is small, and “bad” models for which
the regularizer is large.
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Probability of a Parameter

STEP 3.4, Putting it all togetherThe probability of a particular parameter
valueW given the observations is:

exp(—B{[E(W, Y?, X7) + Llog Zu(W, X', 8)] + H(W)})

P(W|S) =

E(W,Y, X) is our energy function. We can give it any form we like.
Considerable effort should be spent designing appropitaies of £(W,Y, X)
(good architectures) for particular problems. Many speafchitectures will be
discussed in the rest of the course.

H (W) is the regularizer that contains our preferences for “gaodtels over

“pad” ones. Our choice off (W) is somewhat arbitrary, but some work better
than others for particular applications.
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Probability of a Parameter (continued)

eXp(_ﬁ{Zz’[E(VV; YiaXi) + %log ZE(W7 Xzaﬁ)] + H(W)})

PAWIS) = Zw (S, )

Zw (S, B) is the normalization term that ensures that the integr& @t |S)
overW is 1: Zy (S, () is the integral oveiV of the numerator.

Zp(W, X*, 3) are the normalization terms (one for each sample) that ensur
that the integralP(Y'| X*, W) overY is 1:

Zr(W, X", 8) = [exp(—BE(W,Y, X"))dY.

(IS a positive constant that we are free to choose as we likeabmte can
estimate. It reflects the “reliability” of the data. Low vakishould be used to
get probability estimates with noisy data. Large valuesghbe used to get

good discrimination. We can estimatehrough learning too (we can fold it
Into £/, as a component dt/).
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|ntractability of Bayesian L earning

Recall that the formula for our predictor was:
PY|X,S) = /G(W, Y, X)P(W|S)dW

To compute the distribution df for a particular inputX, we are supposed to
Integrate the product of two complicated functions ovepabsible values of
Ww.

This is totally intractable in general.

There are special classes of functionsdbfor which the integral is tractable,
but that class is fairly restricted.

So, we need to take a shortcut.
There is a number of popular shortcuts....
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Making Bayesian L earning Tractable

First shortcut:Maximum A Posteriori Estimation. simply replace the

distribution P(WS) by a Dirac delta function centered on its mode
(maximum).

Second shortcutvlaximum Likelihood Estimation. Same as above, but drop the
regularizer.

Third Shortcut:Restricted Class of function. Simply restrict yourself to special
forms of G(W, Y, X) for which the integral can be computed analytically (e.qg.
Gaussians). CAUTION: This is a perfect example of lookingyfaur lost keys
under the street light.

Fourth shortcutSampling. Draw a a bunch of samples @f from the
distribution P(W|S), and replace the integral by a sum over those samples.

Fifth Shortcut:Local Approximations. compute a Taylor series ¢t(WW|S)
around its maximum and integrate with the resulting (maliate) polynomial.
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Maximum A Posteriori Estimation

P(VIS)

Maximum A Posteriori Estimation: assume that
the mode (maximum) oP(W|S) is so much

larger than all other values that we can view
ol P(W|S) as a Dirac delta function centered

W, around its maximum
AP

p(w1s) Paiap (WS) ~ §(W — Warap)

W Whiap = argmaxy, P(WS)

with this approximation, we get simply:
PY|X,S) = P(Y|X, Wnap)

If we take the limitg — oo, P(W|S) does converge to a delta function around its
maximum So the MAP approximation is simply the largdimit.
Question: How do we compute Wyiap?
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Computing Wyap

Now, here is the cool thing/\iap = argmaxy, P(W|S) =

= argmaxy 575 Xp(—B{2;[EW. Y, X*) + 5 log Zg(W, X", B)] + H(W)})
= argmaxy, exp(—B{>_,[E(W,Y", X*) + 5 log Zp(W, X*, B)] + H(W)})

= argming, > . [E(W,Y", X*) + %logZE(Xi,W,ﬁ)] + H(W)

= argming, >, [E(W,Y?, X*) + § log [ exp(—=BE(W,Y, X"))dY] + H(W)

e can drop the normaliz ecause it does not depen e can take
Wi d h I %W(lTﬁ) b it d d didh W K

the log because log is monotonic.
To find the MAP parameter estimate, we simply need to find theevaf 11 that
minimizes:

Laar (W) = S [EW, Y, X7) + %log / exp(—BE(W,Y, X1))dY] + H(W)

)

Most learning algorithms are of that form
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Maximum Likeihood Estimation

Maximum Likelihood Estimation: same as MAP, but ignorH (W) altogether. This
IS equivalent to finding th& that maximizes? ()| X', W) (the likelihood of the data)
instead ofP(Y|X, W)P(W|X) (the un-normalized posterior of the parameter).

We assume that the mode (maximum)rifiv|S)
W) IS so much larger than all other values that we can
f(le, view P(WW|S) as a Dirac delta function centered
around its maximum, and we assume that the prior
P(W) has no influence on the result:

W/
uﬂLE P(W|S> ~ 5(W_WMLE) WMLE = argmaXWP(y
with this approximation, we get simply:
W PY|X,S)=P(Y|X, WuLE)

How do we computéV/ i, g?
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Computing WyiLe

Same result as with/y 2 p, except thatd (W) disappearsWyLg =

= argmaxy, P(W1S) (1)
= argmaxy z—gg exp(—=A{3,[E(W,Y", X*) + g log Zg(W, X", 8)]}) (2)
= argmaxy exp(—B{3;[E(W,Y", X)) + Llog Zs(W, X", B)]})  (3)

— argming, > . [E(W,Y", X*) + %log Zp(W, X", 3)] (4)
— argminW Zz [E(Wa Yia XZ) + % log f eXp(—ﬂE(W, Ya XZ)>dY] (5)
(6)

to find the MLE parameter estimate, we simply need to find tiheevaf 1V that
minimizes:
1

Lyee(W) =) [E(W,Y', X") + 5

)

log / exp(—BE(W,Y, X"))dY]
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A Little Digression

1

Lyap(W) =) [E(W,Y!, X%) + 3

7

log / exp(—BEW,Y, X"))dY] + H(W)

All of the terms in this equation have analogs and interpieta in Satistical
Physics and Thermodynamics.

S [E(W,Y", X*) is analogous to thAverage Energy of a thermodynamical
system where each sample is analogous to a patrticle in alhgagsa

> +log [exp(—BE(W,Y,X"))dY is analogous to thelelmoltz Free Energy
of a thermodynamical system.

1/6 is analogous to th@emperature of the system.

Lyiap IS analogous to the product of tEmtropy by the Temperature.

The above equation is a form of the well-known thermodynaanjeation<
Temperature > x < Entropy >=< AverageEnergy > — < FreeEnergy >.

MAP/MLE estimation is like entropy minimization.
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A Few Remarkson log [ exp()

The operator:

1 1L
logmean?(vi) = _B logg Z exp(—BV;)
i=1

has many interesting properties. Algebraically, it is taiadn what addition is to
multiplication:

logmean? (V;) = V*+ logmean’ (V; — V*)
8 AN
lim logmean’ (V;) = - Vi
lim logmean; (Vi) =~ ;
ﬁlim logmean? (V;) = Viin
; lim logmean? (Vi) = Viax
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Generative and Discriminative M odels

Early on, we assumed th&(Y | X') was directly modeled by a parameterized family
of functionsG (W, Y, X)), VIW. However, we can Bayes-inveft(Y | X) to get:

P(Y|X) = P(X|Y)P(Y)/P(X) = P(X|Y)P(Y)/ / (X|Y)P

and parameteriz& (X |Y) for eachY by a family of functiongQy (X, W,,) YW,

This seems like a very silly thing to do (and
Indeed it is in many caseswhy should we submit
ourselves to estimating such a horrendous object

asP(X|Y)?
P(XY is the probability density (in input space)
for one particular value of (e.g. a category). It's

horrendous, because it must be normalized over
the set of all possibl&X (which isbig).

Models that estimaté’ (X |Y") are calledgenera-
tive because they can be useddenerate input
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Gener ative/Discriminative Pros and Cons

:-) In some cases, it is simpler to independently estimate aaeEpfanction
P(X|Y, W) for each clas¥’. This allows us to add classes simply by
estimatingP (X |Y, W) for the new class, without revisiting the models of all
the other classes.

:-) Sometimes, it is easier to come up with a good architectura tgenerative
model by simply implementing a process that wosydthes ze the objects we
are trying to recognize/classify (a process knowmaaysis by synthesis.

:-) Training of generative models is generally faster.

.-( Generative models solve a considerably more complex and mor
ll-conditioned problem than necessary.

.-( Generative models spend considerable resource gettingitoke
distribution right when getting the class boundary rightyrba sufficient.

.-( Because the model must be normalized a¥eme are restricted to using
simple “normalizable” density models. We can’t use nonrmalizable models
like linear classifiers or neural nets.

.-( Generative models almost always require much more memahC&uU time
than discriminative one.
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Unsupervised Learning

The probabilistic form of unsupervised learningdssity estimation: finding a
functionG(W,Y') that best approximates the distributiénY’).

The entire derivation oM/ AP and M LE estimation can be transposed to the
case of unsupervised learnibg simply omittingX from all the equations.

The unsupervised loss function to be minimnized for unsuped MAP is:

Luse(W) = SIBW,YY) + Slog [ exp(~BEW,Y))dY] + H(W)

The unsupervised loss function to be minimnized for unsuped MLE is:

Luis(W) = YBOV.Y) + 5 log [ exp(~BE(W.Y))aY]

)
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Energy-Based M odels

As we have seen, most reasonable probabilistic learnirayigigns can be seen
as simply minimizing an appropriately definEdergy Function.

It is tempting, and often justified, to drop the probabitdtamework altogether,
and simply manipulate energy functions...

...but sometimes, we need to worry about the “Free Energy” termsh ensure
that everything is well normalized.

sometimes we can drop the free energy term or transform eyecognition
with no adverse effect (in fact with beneficial effects).

By doing so, we may loose the probabilistic interpretatiobwe may improve
the classification performance.
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MAP/MLE Example: Least Square = Gaussian

607, xw)
F

l)’-—F(#,th"l

f(x w)

/

r

T

Y

p(YI%M) /61, %)

F(x,w)

—

MAP estimation of Gaussian models gives
Least-Square Regression:

PY|X, W) = %exp(—%(Y—F(X,W))Q)
Lyap(W) = > (V' = F(X'W))* + H(W)

)

up to a constant which does not affect the
minimum.

note: F'(X, W) can be non-linear: which leads to
a non-linear least square optimization problem.

if H(W) = \||W]||? this isRidge Regression.
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MAP/MLE Example: Logistic Regression

MAP estimation of binomial distribution gives Logistic Reg-
sion. Y is binary (0 or 1) with a linear parametrization of the

| .r.(.y.’f.h"u) likelihood ratio between the two classes:
WX PY =1X,W)
' — ] =W'X
S P =0/X, W)
1
PY =1X,W) = 1+ exp(—W'X)
GW,Y,X) = P(y=1X,W)"(1-Py=1]X,W))""
1 1
EW)Y, X) = Ylog +(1-Y)1

1+ exp(—W'X) " exp(W'X)

| 1 . 1
MAP( ) EZ: Ogl_l_exp(_[ﬂ/’)g'b) +( ) Ogl—l—eXp(” /XZ) "
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The Subjectivity of Learning

Lyap(W) =) [E(W,Y!, X%) + %

7

log / exp(—BEW,Y, X"))dY] + H(W)

Regularizers, Penalty functions, Prior probabilities,dgieres of Randomness,
Capacity of a family of functions: these are different narfmgghe same thing.

It is hopeless to try to find a “universally good” functionalin for £ or for H.
Different architctures and regularizers are good for dédfe problems. Which
one you pick is up to you. No theory will tell you how to best d@syour £
and H for a particular problem.

No Free Lunch Theoremt your family of function and your prior is good for
particular problems, it must be bad for others. No familydprs good for all
problems.

The best theoretical framework to explain all this is the M&pChervonenkis
(VC) theory.
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