Gradient-Based Learning III: Architectures

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com
The trainer object is designed to train a particular machine with a given energy function and loss. The example below uses the simple energy loss.

```
(defclass simple-trainer object
  input ; the input state
  output ; the output/label state
  machin ; the machine
  mout ; the output of the machine
  cost ; the cost module
  energy ; the energy (output of the cost) and
  param ; the trainable parameter vector)
```
A Trainer class: running the machine

Takes an input and a vector of possible labels (each of which is a vector, hence \texttt{<label-set>} is a matrix) and returns the index of the label that minimizes the energy. Fills up the vector \texttt{<energies>} with the energy produced by each possible label.

\begin{verbatim}
(defmethod simple-trainer run
 (sample label-set energies)
 (==> input resize (idx-dim sample 0))
 (idx-copy sample :input:x)
 (==> machine fprop input mout)
 (idx-bloop ((label label-set) (e energies))
 (==> output resize (idx-dim label 0))
 (idx-copy label :output:x)
 (==> cost fprop mout output energy)
 (e (:energy:x)))
;; find index of lowest energy
(idx-dlindexmin energies))
\end{verbatim}
A Trainer class: training the machine

Performs a learning update on one sample. `<sample>` is the input sample, `<label>` is the desired category (an integer), `<label-set>` is a matrix where the i-th row is the desired output for the i-th category, and `<update-args>` is a list of arguments for the parameter update method (e.g. learning rate and weight decay).

```lisp
(defmethod simple-trainer learn-sample
    (sample label label-set update-args)
    (==> input resize (idx-dim sample 0))
    (idx-copy sample :input:x)
    (==> machine fprop input mout)
    (==> output resize (idx-dim label-set 1))
    (idx-copy (select label-set 0 (label 0)) :output:x)
    (==> cost fprop mout output energy)
    (==> cost bprop mout output energy)
    (==> machine bprop input mout)
    (==> param update update-args)
    (:energy:x))
```
Other Topologies

- The back-propagation procedure is not limited to feed-forward cascades.
- It can be applied to networks of module with *any* topology, as long as the connection graph is acyclic.
- If the graph is acyclic (no loops) then, we can easily find a suitable order in which to call the fprop method of each module.
- The bprop methods are called in the reverse order.
- If the graph has cycles (loops) we have a so-called *recurrent network*. This will be studied in a subsequent lecture.
More Modules

A rich repertoire of learning machines can be constructed with just a few module types in addition to the linear, sigmoid, and euclidean modules we have already seen. We will review a few important modules:

- The branch/plus module
- The switch module
- The Softmax module
- The logsum module
The Branch/Plus Module

- The PLUS module: a module with K inputs X_1, \ldots, X_K (of any type) that computes the sum of its inputs:

$$X_{\text{out}} = \sum_{k} X_k$$

back-prop: $\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{\text{out}}} \forall k$

- The BRANCH module: a module with one input and K outputs X_1, \ldots, X_K (of any type) that simply copies its input on its outputs:

$$X_k = X_{\text{in}} \forall k \in [1..K]$$

back-prop: $\frac{\partial E}{\partial \text{in}} = \sum_k \frac{\partial E}{\partial X_k}$
The Switch Module

- A module with K inputs X_1, \ldots, X_K (of any type) and one additional discrete-valued input Y.
- The value of the discrete input determines which of the N inputs is copied to the output.

\[
X_{\text{out}} = \sum_k \delta(Y - k)X_k
\]

\[
\frac{\partial E}{\partial X_k} = \delta(Y - k) \frac{\partial E}{\partial X_{\text{out}}}
\]

the gradient with respect to the output is copied to the gradient with respect to the switched-in input. The gradients of all other inputs are zero.
The Logsum Module

fprop:
\[X_{out} = -\frac{1}{\beta} \log \sum_k \exp(-\beta X_k) \]

bprop:
\[\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{out}} \frac{\exp(-\beta X_k)}{\sum_j \exp(-\beta X_j)} \]
or
\[\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{out}} P_k \]

with
\[P_k = \frac{\exp(-\beta X_k)}{\sum_j \exp(-\beta X_j)} \]
MAP/MLE Loss $L_{11}(W, Y^i, X^i) = E(W, Y^i, X^i) + \frac{1}{\beta} \log \sum_k \exp(-\beta E(W, k, X^i))$

- A classifier trained with the Log-Likelihood loss can be transformed into an equivalent machine trained with the energy loss.
- The transformed machine contains multiple “replicas” of the classifier, one replica for the desired output, and K replicas for each possible value of Y.

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/30
Softmax Module

A single vector as input, and a “normalized” vector as output:

\[(X_{\text{out}})_i = \frac{\exp(-\beta x_i)}{\sum_k \exp(-\beta x_k)}\]

Exercise: find the bprop

\[\frac{\partial (X_{\text{out}})_i}{\partial x_j} = ???\]
Radial Basis Function Network (RBF Net)

- Linearly combined Gaussian bumps.
- \(F(X, W, U) = \sum_i u_i \exp\left(-k_i (X - W_i)^2\right) \)
- The centers of the bumps can be initialized with the K-means algorithm (see below), and subsequently adjusted with gradient descent.
- This is a good architecture for regression and function approximation.
classification (y is scalar and discrete). Let’s denote $E(y, X, W) = E_y(X, W)$

MAP/MLE Loss Function:

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \left[E_y(X^i, W) + \frac{1}{\beta} \log \sum_k \exp(-\beta E_k(X^i, W)) \right]$$

This loss can be written as

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \left(-\frac{1}{\beta} \log \frac{\exp(-\beta E_{y^i}(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))} \right)$$
Cross-Entropy and KL-Divergence

Let’s denote \(P(j|X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))} \), then

\[
L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \log \frac{1}{P(y^i|X^i, W)}
\]

\[
L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_k D_k(y^i) \log \frac{D_k(y^i)}{P(k|X^i, W)}
\]

with \(D_k(y^i) = 1 \) iff \(k = y^i \), and 0 otherwise.

Example 1: \(D = (0, 0, 1, 0) \) and \(P(.|X^i, W) = (0.1, 0.1, 0.7, 0.1) \). With \(\beta = 1 \),
\(L^i(W) = \log(1/0.7) = 0.3567 \)

Example 2: \(D = (0, 0, 1, 0) \) and \(P(.|X^i, W) = (0, 0, 1, 0) \). With \(\beta = 1 \),
\(L^i(W) = \log(1/1) = 0 \)
Cross-Entropy and KL-Divergence

\[L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_{k} D_k(y^i) \log \frac{D_k(y^i)}{P(k|X^i, W)} \]

- \(L(W) \) is proportional to the *cross-entropy* between the conditional distribution of \(y \) given by the machine \(P(k|X^i, W) \) and the *desired* distribution over classes for sample \(i \), \(D_k(y^i) \) (equal to 1 for the desired class, and 0 for the other classes).

- The cross-entropy also called *Kullback-Leibler divergence* between two distributions \(Q(k) \) and \(P(k) \) is defined as:

\[
\sum_k Q(k) \log \frac{Q(k)}{P(k)}
\]

- It measures a sort of dissimilarity between two distributions.
- The KL-divergence is not a distance, because it is not symmetric, and it does not satisfy the triangular inequality.
Multiclass Classification and KL-Divergence

- Assume that our discriminant module $F(X, W)$ produces a vector of energies, with one energy $E_k(X, W)$ for each class.
- A switch module selects the smallest E_k to perform the classification.
- As shown above, the MAP/MLE loss below be seen as a KL-divergence between the desired distribution for y, and the distribution produced by the machine.

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \left[E_{y^i}(X^i, W) + \frac{1}{\beta} \log \sum_k \exp(-\beta E_k(X^i, W)) \right]$$
Multiclass Classification and Softmax

- The previous machine: discriminant function with one output per class + switch, with MAP/MLE loss
- It is equivalent to the following machine: discriminant function with one output per class + softmax + switch + log loss

\[L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} - \log P(y^i|X, W) \]

with \(P(j|X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))} \) (softmax of the \(-E_j\)'s).

- Machines can be transformed into various equivalent forms to factorize the computation in advantageous ways.
Multiclass Classification with a Junk Category

- Sometimes, one of the categories is “none of the above”, how can we handle that?
- We add an extra energy wire E_0 for the “junk” category which does not depend on the input. E_0 can be a hand-chosen constant or can be equal to a trainable parameter (let’s call it w_0).
- everything else is the same.
NN-RBF Hybrids

- Sigmoid units are generally more appropriate for low-level feature extraction.
- Euclidean/RBF units are generally more appropriate for final classifications, particularly if there are many classes.
- Hybrid architecture for multiclass classification: sigmoids below, RBFs on top + softmax + log loss.
Reparameterizing the function by transforming the space

\[E(Y, X, W) \rightarrow E(Y, X, G(U)) \]

- gradient descent in \(U \) space:
 \[
 U \leftarrow U - \eta \frac{\partial G'}{\partial U} \frac{\partial E(Y, X, W)'}{\partial W}
 \]

- equivalent to the following algorithm in \(W \) space:
 \[
 W \leftarrow W - \eta \frac{\partial G}{\partial U} \frac{\partial G'}{\partial U} \frac{\partial E(Y, X, W)'}{\partial W}
 \]

- dimensions: \([N_w \times N_u][N_u \times N_w][N_w]\)
Parameter-Space Transforms: Weight Sharing

- A single parameter is replicated multiple times in a machine
- \(E(Y, X, w_1, \ldots, w_i, \ldots, w_j, \ldots) \rightarrow E(Y, X, w_1, \ldots, u_k, \ldots, u_k, \ldots) \)
- gradient: \(\frac{\partial E()}{\partial u_k} = \frac{\partial E()}{\partial w_i} + \frac{\partial E()}{\partial w_j} \)
- \(w_i \) and \(w_j \) are tied, or equivalently, \(u_k \) is shared between two locations.
Parameter Sharing between Replicas

- We have seen this before: a parameter controls several replicas of a machine.

\[E(Y_1, Y_2, X, W) = E_1(Y_1, X, W) + E_1(Y_2, X, W) \]

- Gradient:
\[\frac{\partial E(Y_1, Y_2, X, W)}{\partial W} = \frac{\partial E_1(Y_1, X, W)}{\partial W} + \frac{\partial E_1(Y_2, X, W)}{\partial W} \]

- \(W \) is shared between two (or more) instances of the machine: just sum up the gradient contributions from each instance.
Path Summation (Path Integral)

One variable influences the output through several others

\[E(Y, X, W) = E(Y, F_1(X, W), F_2(X, W), F_3(X, W), V) \]

gradient: \[\frac{\partial E(Y, X, W)}{\partial X} = \sum_i \frac{\partial E_i(Y, S_i, V)}{\partial S_i} \frac{\partial F_i(X, W)}{\partial X} \]

gradient: \[\frac{\partial E(Y, X, W)}{\partial W} = \sum_i \frac{\partial E_i(Y, S_i, V)}{\partial S_i} \frac{\partial F_i(X, W)}{\partial W} \]

there is no need to implement these rules explicitly. They come out naturally of the object-oriented implementation.
Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input space, but globally inconsistent. **Example: piecewise linearly separable function.**

- Solution: a machine composed of several “experts” that are specialized on subdomains of the input space.
- The output is a weighted combination of the outputs of each expert. The weights are produced by a “gater” network that identifies which subdomain the input vector is in.

\[
F(X, W) = \sum_k u_k F^k(X, W^k) \quad \text{with} \quad u_k = \frac{\exp(-\beta G_k(X, W^0))}{\sum_k \exp(-\beta G_k(X, W^0))}
\]

- the expert weights \(u_k \) are obtained by softmax-ing the outputs of the gater.
- example: the two experts are linear regressors, the gater is a logistic regressor.
The input is a sequence of vectors X_t.

- **Simple idea**: the machine takes a time window as input
- $R = F(X_t, X_{t-1}, X_{t-2}, W)$
- **Examples of use**:
 - predict the next sample in a time series (e.g. stock market, water consumption)
 - predict the next character or word in a text
 - classify an intron/exon transition in a DNA sequence
Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stacked time-delayed layers.

- layer1 $X^1_t = F^1(X_t, X_{t-1}, X_{t-2}, W^1)$
- layer2 $X^2_t = F^1(X^1_t, X^1_{t-1}, X^1_{t-2}, W^2)$
- cost $E_t = C(X^1_t, Y_t)$

- Examples:
 - predict the next sample in a time series with long-term memory (e.g. stock market, water consumption)
 - recognize spoken words
 - recognize gestures and handwritten characters on a pen computer.

- How do we train?
Training a TDNN

Idea: isolate the minimal network that influences the energy at one particular time step t.

- in our example, this is influenced by 5 time steps on the input.
- train this network in isolation, taking those 5 time steps as the input.
- **Surprise**: we have three identical replicas of the first layer units that share the same weights.
- We know how to deal with that.
- do the regular backprop, and add up the contributions to the gradient from the 3 replicas
If the first layer is a set of linear units with sigmoids, we can view it as performing a sort of *multiple discrete convolutions* of the input sequence.

1D convolution operation:

\[S_t^1 = \sum_{j=1}^{T} W_j^1 X_{t-j}. \]

- \(w_{jk} \quad j \in [1, T] \) is a *convolution kernel*
- sigmoid \(X_t^1 = \tanh(S_t^1) \)
- derivative: \(\frac{\partial E}{\partial w_{jk}} = \sum_{t=1}^{3} \frac{\partial E}{\partial S_t^1} X_{t-j} \)
Simple Recurrent Machines

The output of a machine is fed back to some of its inputs Z. $Z_{t+1} = F(X_t, Z_t, W)$, where t is a time index. The input X is not just a vector but a sequence of vectors X_t.

- This machine is a *dynamical system* with an internal state Z_t.
- Hidden Markov Models are a special case of recurrent machines where F is linear.
To train a recurrent net: “unfold” it in time and turn it into a feed-forward net with as many layers as there are time steps in the input sequence.

An unfolded recurrent net is a very “deep” machine where all the layers are identical and share the same weights.

\[
\frac{\partial E}{\partial W} = \sum_t \frac{\partial E}{\partial Z_t} \frac{\partial F(X_t, Z_t, W)}{\partial W}
\]

This method is called back-propagation through time.

Examples of use: process control (steel mill, chemical plant, pollution control...), robot control, dynamical system modelling...