Trees and Graphs

Basic Definitions

- **Tree**: Any connected, acyclic graph $G = (V,E)$
 - $|E| = |V| - 1$
- **n-ary Tree**: Tree such that all vertices of degree $\leq n+1$
 - A “root” has degree $\geq n$
- **Binary Search Tree**: A binary tree such that
 - If node y is the left child of node x, $\text{key}[y] \leq \text{key}[x]$
 - If node z is the right child of node x, $\text{key}[x] \leq \text{key}[z]$
- **Inorder Traversal (for Binary Trees)**: Recursively process left child, process root, recursively process right child
 - Takes $\Theta(|V|)$ time
 - Used with a BST to print values in sorted order
 - Other traversal methods include preorder and postorder

Searching a BST

Tree-Search(x, k)

- if $x == \text{NIL}$ or $\text{key}[x] == k$ then return x
- if $k < \text{key}[x]$
 - return $\text{Tree-Search(left}[x], k)$
 - return $\text{Tree-Search(right}[x], k)$

- Eliminating tail recursion:

 Tree-Search’(x, k)

 - do
 - if $x == \text{NIL}$ or $\text{key}[x] == k$ then return x
 - if $k < \text{key}[x]$ then $x = \text{left}[x]$ else $x = \text{right}[x]$
 - loop

- What is the runtime?

Other operations on BSTs

- Some other easy operations to perform include:
 - **Minimum**
 - Last node
 - **Maximum**
 - Symmetric to minimum
 - **Successor**
 - Minimum of the key’s right subtree if it exists, otherwise first ancestor such that the key lies in its left subtree
 - **Predecessor**
 - Symmetric to successor
 - What are the runtimes?

Inserting / Deleting BST Nodes

- **Insert**(z): Search down the tree from the root… from a node x, move left if $\text{key}[z] < \text{key}[x]$, else move right. Insert z in the first empty location encountered.
- **Delete**(z): If z has less than 2 children, splice it out. If z has 2 children, find node $y = \text{Successor}(z)$ and splice y out, then replace z with y.
 - Note that y cannot have 2 children, so it can always be spliced (this is because y will be the minimum element in z’s right subtree by definition of Successor, thus y has no left child).

Expected Case for a BST

- Assume n nodes are inserted in random order. How many comparisons are performed?
- Consider the first arrival (the root). How many subsequent nodes go to the left/right of it?
 - Root is the k-th smallest with probability $1/n$
 - The root acts like the “pivot” in QuickSort, all elements are compared against it, then sent left or right
 - How many total comparisons?
 - $T(n) = n-1 + \frac{1}{n} \sum_{i=1}^{n} \left[T(i-1) + T(n-i) \right]$
 - We have solved this before: $T(n) = O(n \log n)$
2-3 Trees

- A “balanced” search tree, with special properties:
 - All internal nodes have 2 or 3 children
 - All leaves are at the same depth
 - Plus standard search tree property (ordered subtrees)
 - “Guides” can be used to improve efficiency
 - Each node remembers the maximum key in its subtree

- O(log n) Search/Insert/Delete operations

- “Guides” can be used to improve efficiency

- See additional notes in handout for details

- Useful as a “Dictionary” data structure

General Directed Graphs

- May contain cycles, which often need to be handled as a special case

- Adjacency Matrix vs Adjacency List representation
 - Matrix requires $\Theta(|V|^2)$ space
 - Constant time to search for existence of an edge
 - List requires $\Theta(|V| + |E|)$ space
 - Needs $O(|E|)$ time in the worst case to search an edge

- Traversal techniques:
 - Breadth First Search (BFS)
 - Depth First Search (DFS)

BFS

- Given graph $G = (V,E)$ and a source vertex $s \in V$:
 \[\text{BFS}(V,E, s) \]

- For all $x \in V$ color[x] = WHITE, d[x] = ∞, $\pi[x]$ = NIL

- $Q = \emptyset$ // Initialize an empty FIFO queue Q

- $d[s] = 0$, Enqueue(Q, s)

- While $Q \neq \emptyset$

 - $u = \text{Dequeue}(Q)$

 - For all $v \in \text{Adj}[u]$

 - If color[v] == WHITE

 - color[v] = GRAY

 - $d[v] = d[u] + 1$, $\pi[v] = u$, Enqueue(Q, v)

 - color[u] = BLACK

- Runtime? $O(|V| + |E|)$

- Useful shortest path property

DFS

- Given graph $G = (V,E)$ and a source vertex $s \in V$:
 \[\text{DFS-VISIT}(s) \] // Not the full DFS procedure (see CLRS p. 541)

- Assume nodes x were originally initialized with

 - color[x] = WHITE, $\pi[x]$ = NIL, and that global variable $time = 0$

- $color[u]$ = GRAY

- $time = time + 1$

- For all $v \in \text{Adj}[u]$

 - If color[v] == WHITE

 - $\pi[v] = u$

 - DFS-VISIT(v)

- $color[u]$ = BLACK, $time = time + 1$, $f[u] = time$

- Runtime? $O(|V| + |E|)$

Observations about DFS

- DFS can also be implemented by replacing the FIFO queue in BFS with a LIFO stack

- “Parenthesis structure” (see CLRS p. 543)

- Classification of edges. Edge (u,v) in a tree T is a…
 - Tree edge if $(u, v) \in T$
 - In a DFS tree, this means v is first visited coming from u
 - Forward edge if u is an ancestor of v but $(u, v) \notin T$
 - In a DFS tree, means v was first visited by a descendent of u
 - Back edge if v is an ancestor of u in T
 - Exists if and only if there is a cycle in G
 - Cross edge if it is none of the above

Topological Sort

- A topological sort of a directed acyclic graph $G = (V,E)$ is an ordering of V such that if $(u,v) \in E$ then u appears before v in the sort

- DFS the graph G, and sort V in order of decreasing finishing time (i.e. last to be “blackened” is first)

- Runtime is $\Theta(|V| + |E|)$ for DFS + $O(|V|)$ time to maintain a stack containing blackened vertices
Strongly Connected Components

- A strongly connected component is a *maximal* set of vertices $C \subseteq V$ such that for any pair of distinct vertices u and v in C, there is a path from u to v and a path from v to u in G
- Find SCCs by doing a complete DFS of G to get a topological sort of V, and DFSing the *transpose* graph of G in the topologically sorted order
 - Be sure to read details in CLRS, I will only sketch the procedure and proof in class