Selection and Hashing

The Selection Problem

- **Input** is a set of *n* distinct items \{a_1, a_2, \ldots, a_n\} and an integer *i*, with 1 \leq *i* \leq *n*
- **Output** is an element *x* (taken from the input set) such that *x* is larger than exactly *i*-1 elements of the input set (i.e. *x* is the *i*-th largest element)
 - Min and Max are special cases (with *i*=1 and *n*, resp.)

Selection in Expected Linear Time

Randomized-Select(A[1..n], i)
- \textbf{if} *n* == 1 then return A[1]
- \textbf{q} = Randomized-Partition(A[1..n])
- \textbf{if} *i* == \textbf{q} then return A[\textbf{q}]
- \textbf{if} *i* < \textbf{q} then return Randomized-Select(A[1..\textbf{q}-1], *i*)
- \textbf{else} return Randomized-Select(A[\textbf{q}+1..n], *i* - \textbf{q})

- **What is the worst case runtime?**
- **What is expected runtime?**
 - Randomized-Partition selects from *n* possible pivots uniformly
 - Pretend the “worst case” always happens in the conditional
 - \(E[T(n)] \leq O(n) + (1/n) \sum_{q=1}^{n} T(\max(q-1,n-q))\)
 - Prove \(E[T(n)] = O(n)\) by induction… see CLRS for details

Selection in Worst Case Linear Time

- **A high level description of algorithm** Select(A[1..n], i):
 1. Divide input array A into \(n/5\) groups of 5 elements each
 2. Find the medians of each of the small (5 element) groups.
 - Observe this takes constant time per group, and is thus an \(O(n)\) time operation. Call the set of all \(n/5\) of these medians \(X\).
 3. Recursively call \(Select(X,n/2)\) to find the median of \(X\). Call this median \(x\) (it is a “median of medians”).
 4. Partition \(A\) using \(x\) as the pivot value. Let \(q\) be the position of the pivot in the partitioned array (i.e. \(x\) is the \(q\)-th largest, and we have \(A[q] == x\) after partitioning). This takes time \(O(n)\).
 5. **If** \(i == q\) then return \(x\). Otherwise, call select recursively:
 - \textbf{if} \(i < q\) return \(Select(A[1..q-1], i)\)
 - \textbf{else} return \(Select(A[q+1..n], i - q)\)

- **See CLRS for details of the runtime analysis**
 - I will only sketch this in class

Basic Data Structures

- **Stacks**
 - LIPO – Last In First Out
 - Constant time per “push” or “pop” operation
- **Queues**
 - FIFO – First In First Out
 - Constant time per enqueue / dequeue operation
- **Priority Queues**
 - Highest Priority at any given time gets out first
 - Using heaps, \(O(\log n)\) time per operation
- **(Doubly) Linked Lists**
 - Takes \(O(n)\) time to find an item, constant time to insert new ones
- **Trees**
- **(Directed) Graphs**

Hash Tables

- **Generalized notion of arrays**
 - Let \(U\) denote the set of all data keys (the “universe”)
 - Let \(T[0..m-1]\) be an array (or “table”) of size \(m\)
 - \(n\) distinct keys \(k_1, \ldots, k_n \in U\) must be stored in the table
 - “Direct Addressing” is natural, but inefficient
 - Requires \(m = |U|\), so storage requirements are \(O(|U|)\)
 - **Hashing** increases storage efficiency when \(n \ll |U|\)
 - A hash function \(h\) maps \(U\) into \(Z_m = \{0, \ldots, m-1\}\)
 - **For this to be useful, we require that** \(m < |U|\)
 - Thus key \(k\) can be stored in \(T[h(k)]\)
 - **Since** \(|U| > m\), there must be some collisions
Collision Resolution by Chaining

- Make each table entry a linked list
 - Key k is present if it is in the linked list \(T[h(k)] \)
 - To Insert k, search the linked list \(T[h(k)] \)
 - To Delete key k, search and then remove it from the linked list

- What is the worst case runtime?
 - \(h \) is constant time (it is independent of \(n \))
 - Insert is constant time, Find is \(O(n) \) if \(O(n) \) keys collide

- What is the expected runtime if keys hash uniformly?
 - Define the load factor \(\alpha \) to be \(\frac{n}{m} \)
 - Let \(n_j \) denote the length of the list \(T[j] \)
 - Clearly \(n = \sum_{j=0}^{m} n_j \)
 - Expected search time is thus \(\Theta(1+\alpha) \)

Obtaining Uniform Hashing

- If keys are uniformly distributed in \([0,1)\):
 - \(h(k) = \lfloor mk \rceil \) (could handle other intervals easily too)

- Other ideas (must choose the constants carefully):
 - Division method: \(h(k) = k \mod m \)
 - Multiplication method: \(h(k) = \lfloor m (kA \mod 1) \rceil \)

- A general method: Universal Hashing
 - Define a hash family \(\mathcal{H} \) containing many hash functions
 - Fix keys \(k_1, k_2 \), then choose a function \(h \in \mathcal{H} \) at random
 - We say \(\mathcal{H} \) is universal if \(\Pr(h(k_1) = h(k_2)) = \frac{1}{m} \)

 - Can show this by solving for \((a,b)\) in terms of \((r,k_1)\) and \((s,k_2)\)

 - Collision implies \((r = s) \mod m \)
 - For random \((r,s)\) this happens with probability \(\frac{1}{m} \)

 - Can show this by counting how many pairs from \(\mathbb{Z}_p \times \mathbb{Z}_p \) collide \(\mod m \)

Designing Universal Hash Families

- Brief intro to number theory required (CLRS 31.3, 31.4)
- Let \(p \) be a prime, and \(\mathbb{Z}_p = \{0,\ldots,p-1\}, \mathbb{Z}_p^* = \{1,\ldots,p-1\} \)
- Choose a large prime \(p \) such that \(p \geq |U| > m \)
- Let \(\mathcal{H}_{p,m} \) contain functions \(h_{a,b}(k) \) where:
 - \(h_{a,b}(k) = \lfloor (ak + b) \mod p \rceil \mod m \)
- What can cause this hash function to collide?
 - Let \(r = (ak_1 + b) \mod p, s = (ak_2 + b) \mod p \)
 - For uniform \((a,b)\) we get uniform \((r,s)\) \(\mod m \)
 - Can show this by solving for \((a,b)\) in terms of \((r,k_1)\) and \((s,k_2)\)
 - Collision implies \(r = s \) \(\mod m \)
 - For random \((r,s)\) this happens with probability \(\frac{1}{m} \)
 - Can show this by counting how many pairs from \(\mathbb{Z}_p \times \mathbb{Z}_p \) collide \(\mod m \)

(Linear) Open Addressing

- Technique for \(\alpha \leq 1 \) only (i.e. \(n \leq m \))
- Each table entry contains at most one key
- Insert: If \(T[h(k)] \) is empty, insert there. Otherwise look for the next empty slot in \(T \), and insert there.
- Find: If \(T[h(k)] \) is empty or contains \(k \), done. Otherwise, continue searching the next entry until either \(k \) or an empty slot is found.

- Performance gets much worse as \(\alpha \) approaches 1
- Can use more advanced techniques... see CLRS

Perfect Hashing

- **Worst case** time to Insert and Find is constant
- Requires that the set of keys be fixed for all time
- e.g. the English dictionary
- Uses a “secondary” hash table instead of a linked list (as in chaining), for each of the entries in \(T \)
 - \(T[j] \) contains a secondary hash table \(S_j \)
 - Choose a universal hash function \(h \) for table \(T \)
 - Make table \(S_j \) of size \(n_j = n^3 \)
 - Choose a separate universal hash function \(h \) for each table \(S_j \)
 - Keep choosing a new \(h \) until no collisions occur in \(S_j \)
 - Can show total expected storage will be \(O(n) \), including the space to store the list of \(n+1 \) universal hash functions

- No collisions occur in secondary tables, so the proper location for any key can be found in two lookups