Introduction

Algorithms

- Goal: map inputs to outputs
 - The mapping is usually defined by a “problem”
 - No “information” is generated… data is “processed”
- Correctness is critical
 - Should prove that the mapping will (almost?) always be performed correctly by your algorithm
- Efficiency is very important
 - What does “efficient” mean? What is being measured?
 - Running time, Space (memory), other resources…
 - Tradeoff: Efficiency vs. ease of design and elegance of implementation

Example Problem: Sorting

- Input is a sequence of \(n \) items \((a_1, a_2, \ldots, a_n)\)
- The mapping we want is determined by a “comparison” operation, denoted by \(\leq \)
- Output is a sequence \((b_1, b_2, \ldots, b_n)\) such that:
 - \(\{ a_1, a_2, \ldots, a_n \} = \{ b_1, b_2, \ldots, b_n \} \)
 - (i.e. output is a permutation of the input sequence)
 - \(b_1 \leq b_2 \leq \ldots \leq b_n \)
 - Sorting is really only useful when it can improve the efficiency of subsequent operations…

Insertion Sorting

\[
\text{Insertion-Sort}(A[1..n]):
\begin{align*}
& \text{for } j = 2 \text{ to } n \\
& \text{key} = A[j] \\
& i = j - 1 \\
& \text{while } i > 0 \text{ and } key \leq A[i] \\
& \quad A[i+1] = A[i] \\
& \quad i = i - 1 \\
& \quad A[i+1] = key
\end{align*}
\]

Correctness of Insertion Sort

- Use Loop Invariants
 - Initialization
 - Like a “Base Case”
 - Maintenance
 - Like “Inductive Step”
 - Termination
 - True at end of loop
- Consider the for loop:
 - Claim: At end of each loop, \(A[1..j] \) is in sorted order
 - Initialization: \(j = 2 \), thus \(A[1..j-1] \) is sorted at start
 - Maintenance: if \(A[1..j-1] \) was sorted at the start of the loop, then \(A[1..j] \) will be sorted at the end
 - Termination: At end of last loop, \(A[1..n] \) is sorted

Runtime of Insertion Sort

\[
\text{Insertion-Sort}(A[1..n]):
\begin{align*}
& \text{for } j = 2 \text{ to } n \\
& \text{key} = A[j] \\
& i = j - 1 \\
& \text{while } i > 0 \text{ and } key \leq A[i] \\
& \quad A[i+1] = A[i] \\
& \quad i = i - 1 \\
& \quad A[i+1] = key
\end{align*}
\]

- What takes time?
 - CLRS counts each op…
 - We will count uses of \(\leq \)
- Easy to see the outer loop happens \(n \) times, but what about the inner one?

- “Worst case” runtime analysis: how bad could it be?
- Worst case happens if input is exactly “anti-sorted”
 - The inner loop will run from \(i = j-1 \) to 0, total of \(j \) times
 - One \(\leq \) used per inner loop, total of \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \) uses
- What is the best case?
Merge Sorting 1

• Observation: It is easy to merge two pre-sorted lists
• Merge(L[1..n _1], R[1..n _2]):
 \[n = n _1 + n _2 ; i , j = 1 \]
 Create array A[1..n]
 for k = 1 to n
 if L[i] \leq R[j] then // Out of bounds = \infty
 A[k] = L[i]; i = i+1
 else
 A[k] = R[j]; j = j+1
 return A // A is now a merge of L,R

• Uses exactly \[n = n _1 + n _2 \] comparisons

Merge Sorting 2

• Intuition: “Divide and Conquer”. Chop input into smaller, easily sorted lists… then merge them
• Merge-Sort(A[1..n]):
 if n > 1 then
 p = \lfloor n/2 \rfloor
 L = Merge-Sort(A[1 .. p])
 R = Merge-Sort(A[p+1 .. n])
 return Merge(L, R)
 else return A

• Correctness follows from correctness of Merge
• How can we analyze the runtime?

Runtime of Merge Sort

Merge-Sort(A[1..n]):
 if n > 1 then
 p = \lfloor n/2 \rfloor
 L = Merge-Sort(A[1 .. p])
 R = Merge-Sort(A[p+1 ..n])
 return Merge(L, R)
 else return A

• Exactly \[n \] total comparison operations are performed by the call to Merge(L, R)
• How many comparisons due to the recursion?
• Write a recurrence eqn.

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \]

Solving the Recurrence: Method 1

• Know the answer… then prove it using induction
• Helps to be a psychic. Since you probably aren’t, I will tell you the answer is: \[T(n) = n \log n \]

Proof:
1) Check basis step first: \[T(2) = 2 \log 2 = 2 \]
2) Assume: \[T(2^i) = 2^i \log 2^i \] (inductive hypothesis)

Need to show: \[T(2^{i+1}) = 2^{i+1} \log 2^{i+1} \]

By definition:
\[T(2^{i+1}) = T(2^i) + T(2^i) + 2^{i+1} = 2^i(2 \log 2^i) + 2^{i+1} = 2^{i+1}(\log 2^i + 1) = 2^{i+1} \log 2^{i+1} \]

Solving the Recurrence: Method 2

• Recursion Trees
 - See diagram in CLRS (I will draw this for you)
 - Much more intuitive, but somewhat error prone
 - Also easy to show that we don’t really need \(n \) of the form \(2^i \)

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \]

• Consider only \(n \) of the form \(2^i \) for some \(i \)

Solving the Recurrence: Method 3

• Algebraic Techniques (more on these in the next class)
 - Yield exact solutions
 - Less error prone
 - Much harder for most people

• In general, main techniques are
 - Telescoping
 - Domain Transformations
 - Range Transformations

• Can often “cheat”, and apply the “Master Theorem”

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \]

• Consider only \(n \) of the form \(2^i \) for some \(i \)
Asymptotic Behavior

- Theoretically, constant factors don’t matter much…
 - e.g. what is faster, $4n^2 + 10$ or n^3 operations?
 - In practice, they often do matter though
- Primarily, we will consider the design of “scalable” algorithms that must be efficient for large inputs
 - Bio-informatics, Google, etc.
- Thus, our primary concern is the behavior of algorithms as the input size tends towards ∞
 - This means we should consider the asymptotic behavior of efficiency measures such as runtime

O–Notation

- **Asymptotic Upper Bound**
 - Definition: $f(n) = O(g(n))$ iff there exist positive constants c and n_0 such that:

 $$0 \leq f(n) \leq c g(n) \text{ for all } n \geq n_0$$
 - Intuitively, this states that some constant multiple of $g(n)$ eventually grows faster than $f(n)$ as n gets larger
 - Be careful, the “=” operator here is not equality!
 - Observe that c can be arbitrary, so any constant factors in $g(n)$ are irrelevant. Just omit them.
 - Example: $2n + \log n = O(n)$

Ω–Notation

- **Asymptotic Lower Bound**
 - Definition: $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that:

 $$0 \leq c g(n) \leq f(n) \text{ for all } n \geq n_0$$
 - Intuitively, this states that $f(n)$ eventually grows faster than some constant multiple of $g(n)$ as n gets larger
 - Again, the “=” operator here is not equality!
 - Observe that c can be arbitrary, so any constant factors in $g(n)$ are irrelevant. Just omit them.
 - Example: $2n + \log n = \Omega(n)$

Θ–Notation

- **Asymptotically Tight Bound**
 - Definition: $f(n) = \Theta(g(n))$ iff there exist positive constants c_1, c_2, and n_0 such that:

 $$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0$$
 - Intuitively, this states that $f(n)$ eventually grows like a constant multiple of $g(n)$ as n gets larger
 - Again, the “=” operator here is not equality!
 - Observe that c can be arbitrary, so any constant factors in $g(n)$ are irrelevant. Just omit them.
 - Example: $2n + \log n = \Theta(n)$

o–Notation

- **Strict Asymptotic Upper Bound**
 - Definition: $f(n) = o(g(n))$ iff for any positive constant c there exists a positive constant n_0 such that:

 $$0 \leq f(n) \leq c g(n) \text{ for all } n \geq n_0$$
 - Intuitively, this states that any constant multiple of $g(n)$ eventually grows faster than $f(n)$ as n gets larger
 - Again, the “=” operator here is not equality!
 - Observe that c can be arbitrary, so any constant factors in $g(n)$ are irrelevant. Just omit them.
 - Example: $2n + \log n = o(n^2)$

ω–Notation

- **Asymptotic Lower Bound**
 - Definition: $f(n) = \omega(g(n))$ iff for any positive constant c there exists a positive constant n_0 such that:

 $$0 \leq c g(n) \leq f(n) \text{ for all } n \geq n_0$$
 - Intuitively, this states that $f(n)$ eventually grows faster than any constant multiple of $g(n)$ as n gets larger
 - Again, the “=” operator here is not equality!
 - Observe that c can be arbitrary, so any constant factors in $g(n)$ are irrelevant. Just omit them.
 - Example: $2n + \log n = \omega(\log n)$
Useful Relationships

- Transitivity: \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) implies that \(f(n) = O(h(n)) \) (similarly for all...)

- Reflexivity: \(f(n) = O(f(n)) \) (similarly for \(\Theta, \Omega \))

- \(f(n) = \Theta(g(n)) \) iff \(g(n) = \Theta(f(n)) \)

- \(f(n) = O(g(n)) \) iff \(g(n) = \Omega(f(n)) \)

- \(f(n) = o(g(n)) \) iff \(g(n) = \omega(f(n)) \)

- \(f(n) = \Theta(g(n)) \) iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)