Introduction
Algorithms

• Goal: map inputs to outputs
 ▪ The mapping is usually defined by a “problem”
 ▪ No “information” is generated… data is “processed”

• Correctness is critical
 ▪ Should prove that the mapping will (almost?) always be performed correctly by your algorithm

• Efficiency is very important
 ▪ What does “efficient” mean? What is being measured?
 ▪ Running time, Space (memory), other resources…
 ▪ Tradeoff: Efficiency vs. ease of design and elegance of implementation
Example Problem: Sorting

• Input is a sequence of \(n \) items \((a_1, a_2, \ldots, a_n)\)
• The mapping we want is determined by a “comparison” operation, denoted by \(\leq \)
• Output is a sequence \((b_1, b_2, \ldots, b_n)\) such that:
 ▪ \(\{ a_1, a_2, \ldots, a_n \} = \{ b_1, b_2, \ldots, b_n \} \) (i.e. output is a permutation of the input sequence)
 ▪ \(b_1 \leq b_2 \leq \ldots \leq b_n \)
• Sorting is really only useful when it can improve the efficiency of subsequent operations…
Insertion Sorting

• Insertion-Sort(A[1..n]):
 for j = 2 to n
 key = A[j]
 i = j – 1
 while i > 0 and key ≤ A[i]
 A[i + 1] = A[i]
 i = i – 1
 A[i + 1] = key

• Does this algorithm sort A correctly?
 ▪ Compare this with page 17 of CLRS for notation…
Correctness of Insertion Sort

Insertion-Sort(A[1..n]):
 for j = 2 to n
 key = A[j]
 i = j – 1
 while i > 0 and key ≤ A[i]
 A[i + 1] = A[i]
 i = i – 1
 A[i + 1] = key

• Use Loop Invariants
 ▪ Initialization
 • Like a “Base Case”
 ▪ Maintenance
 • Like “Inductive Step”
 ▪ Termination
 • True at end of loop

• Consider the for loop:

• Claim: At end of each loop, A[1 .. j] is in sorted order
 ▪ Initialization: j = 2, thus A[1 .. j-1] is sorted at start
 ▪ Maintenance: if A[1 .. j-1] was sorted at the start of the loop, then A[1 .. j] will be sorted at the end
 ▪ Termination: At end of last loop, A[1..n] is sorted
Runtime of Insertion Sort

Insertion-Sort(A[1..n]):
 for j = 2 to n
 key = A[j]
 i = j – 1
 while i > 0 and key ≤ A[i]
 A[i + 1] = A[i]
 i = i – 1
 A[i + 1] = key

• What takes time?
 ▪ CLRS counts each op…
 ▪ We will count uses of ≤

• Easy to see the outer loop happens n-1 times, but what about the inner one?

• “Worst case” runtime analysis: how bad could it be?
• Worst case happens if input is exactly “anti-sorted”
 • The inner loop will run from i = j-1 to 0, total of j times
 • One ≤ used per inner loop, total of ∑_{j=2}^{n} j = ____ uses

• What is the best case?
Merge Sorting 1

• Observation: It is easy to merge two pre-sorted lists
• Merge($L[1..n_1]$, $R[1..n_2]$):

 $n = n_1 + n_2$; $i, j = 1$

 Create array $A[1..n]$

 for $k = 1$ to n

 if $L[i] \leq R[j]$ then // Out of bounds = ∞
 $A[k] = L[i]$; $i = i+1$
 else
 $A[k] = R[j]$; $j = j+1$
 return A // A is now a merge of L, R
• Uses exactly $n = n_1+n_2$ comparisons
Merge Sorting 2

• Intuition: “Divide and Conquer”. Chop input into smaller, easily sorted lists… then merge them

• Merge-Sort(A[1..n]):
 if n > 1 then
 p = ⌊ n/2 ⌋
 L = Merge-Sort(A[1 .. p])
 R = Merge-Sort(A[p+1 .. n])
 return Merge(L, R)
 else return A

• Correctness follows from correctness of Merge

• How can we analyze the runtime?
Runtime of Merge Sort

Merge-Sort(A[1..n]):
if n > 1 then
p = ⌊ n/2 ⌋
L = Merge-Sort(A[1 .. p])
R = Merge-Sort(A[p+1 ..n])
return Merge(L, R)
else return A

• Exactly n total comparison operations are performed by the call to Merge(L, R)
• How many comparisons due to the recursion?
• Write a recurrence eqn.

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \]
\[T(2) = 2 \]

• To simplify, can consider only n of the form 2^i for some i
• How do we solve this?
Solving the Recurrence: Method 1

• Know the answer... then prove it using induction
 ▪ Helps to be a psychic. Since you probably aren’t, I will tell you the answer is: $T(n) = n \lg n$

Proof:
1) Check basis step first: $T(2) = 2 \lg 2 = 2 \checkmark$
2) Assume: $T(2^i) = 2^i \lg 2^i$ (inductive hypothesis)

Need to show: $T(2^{i+1}) = 2^{i+1} \lg 2^{i+1}$

By definition: $T(2^{i+1}) = T(2^i) + T(2^i) + 2^{i+1}$
$= 2 \cdot (2^i \lg 2^i) + 2^{i+1} = 2^{i+1}(\lg 2^i + 1)$
$= 2^{i+1} \lg 2^{i+1} \checkmark$

• $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$, $T(2) = 2$

• Consider only n of the form 2^i for some i
Solving the Recurrence: Method 2

- Recursion Trees
 - See diagram in CLRS (I will draw this for you)
 - Much more intuitive, but somewhat error prone
 - Also easy to show that we don’t really need \(n \) of the form \(2^i \)…

\[
T(n) = T(⌊ n/2 ⌋) + T(⌈ n/2 ⌉) + n, \quad T(2) = 2
\]

- Consider only \(n \) of the form \(2^i \) for some \(i \)
Solving the Recurrence: Method 3

• Algebraic Techniques (more on these in the next class)
 ▪ Yield exact solutions
 ▪ Less error prone
 ▪ Much harder for most people

• In general, main techniques are
 ▪ Telescoping
 ▪ Domain Transformations
 ▪ Range Transformations

• Can often “cheat”, and apply the “Master Theorem”

\[
T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n, \quad T(2) = 2
\]

• Consider only \(n \) of the form \(2^i \) for some \(i \)
Asymptotic Behavior

• Theoretically, constant factors don’t matter much…
 ▪ e.g. what is faster, $4n^2 + 10$ or n^3 operations?
 ▪ In practice, they often do matter though

• Primarily, we will consider the design of “scalable” algorithms that must be efficient for large inputs
 ▪ Bio-informatics, Google, etc.

• Thus, our primary concern is the behavior of algorithms as the input size tends towards ∞
 ▪ This means we should consider the asymptotic behavior of efficiency measures such as runtime
O–Notation

• Asymptotic Upper Bound
 ▪ Definition: \(f(n) = O(g(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that:

 \[
 0 \leq f(n) \leq c \cdot g(n) \quad \text{for all } n \geq n_0
 \]
 ▪ Intuitively, this states that some constant multiple of \(g(n) \) eventually grows faster than \(f(n) \) as \(n \) gets larger
 ▪ Be careful, the “=“ operator here is not equality!

• Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.
• Example: \(2n + \log n = O(n) \)
Ω–Notation

• Asymptotic Lower Bound
 ▪ Definition: \(f(n) = \Omega(g(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that:

\[
0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0
\]

 ▪ Intuitively, this states that \(f(n) \) eventually grows faster than some constant multiple of \(g(n) \) as \(n \) gets larger
 ▪ Again, the "\(= \)" operator here is not equality!

• Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.

• Example: \(2n + \lg n = \Omega(n) \)
Θ–Notation

• Asymptotically Tight Bound
 ▪ Definition: $f(n) = \Theta(g(n))$ iff there exist positive constants $c_1, c_2,$ and n_0 such that:

 \[
 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \quad \text{for all } n \geq n_0
 \]
 ▪ Intuitively, this states that $f(n)$ eventually grows like a constant multiple of $g(n)$ as n gets larger
 ▪ Again, the “$=$“ operator here is not equality!

• Observe that c can be arbitrary, so any constant factors in $g(n)$ are irrelevant. Just omit them.

• Example: $2n + \log n = \Theta(n)$
O-Notation

- **Strict Asymptotic Upper Bound**
 - Definition: $f(n) = o(g(n))$ iff for any positive constant c there exists a positive constant n_0 such that:

 $$0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0$$

 - Intuitively, this states that any constant multiple of $g(n)$ eventually grows faster than $f(n)$ as n gets larger.
 - Again, the “$=\$” operator here is *not* equality!

- **Observe** that c can be arbitrary, so any constant factors in $g(n)$ are irrelevant. Just omit them.

- **Example**: $2n + \lg n = o(n^2)$
ω–Notation

• Asymptotic Lower Bound
 ▪ Definition: \(f(n) = \omega(g(n)) \) iff for any positive constant \(c \) there exists a positive constant \(n_0 \) such that:

\[
0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0
\]

▪ Intuitively, this states that \(f(n) \) eventually grows faster than any constant multiple of \(g(n) \) as \(n \) gets larger
▪ Again, the “\(=\)“ operator here is not equality!

• Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.
• Example: \(2n + \log n = \omega(\log n) \)
Useful Relationships

• Transitivity: if \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) implies that \(f(n) = O(h(n)) \) (similarly for all…)

• Reflexivity: \(f(n) = O(f(n)) \) (similarly for \(\Theta, \Omega \))

• \(f(n) = \Theta(g(n)) \) iff \(g(n) = \Theta(f(n)) \)

• \(f(n) = O(g(n)) \) iff \(g(n) = \Omega(f(n)) \)

• \(f(n) = o(g(n)) \) iff \(g(n) = \omega(f(n)) \)

• \(f(n) = \Theta(g(n)) \) iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)