Greedy Algorithms

Greed

- Locally optimal decisions are called greedy
 - Short sighted strategy (e.g. thinking only one move ahead in a game), usually easy to implement
 - Generally efficient, but...
 - May not lead to a globally optimal solution
 - Sometimes, close enough to globally optimal anyway

What are some examples of greedy algorithms?
- For the MST problem: Prim’s and Kruskal’s algorithms
- For the SSSP problem: Dijkstra’s algorithm
 - Remember, Dijkstra only works for graphs with no negative edge weights… why?

Greedy Technique

- Basic steps to finding efficient greedy algorithms:
 - Start by finding a dynamic programming style solution
 - Prove that at each step of the recursion, the min/max can be satisfied by a “greedy choice” (greedy substructure)
 - Show that only one recursive call needs to be made once the greedy choice is assumed. This is often natural when all the recursive calls are made by the min/max.
 - Find the recursive solution using the greedy choice
 - Convert to an iterative algorithm if possible

- More generally, taking the direct approach:
 - Show the problem is reduced to a subproblem via a greedy choice
 - Prove there is an optimal solution containing the greedy choice
 - Prove that combining the greedy choice with an optimal solution for the remaining subproblem yields an optimal solution

Examples: Activity Selection

- Given a set of activities $S = \{a_1, \ldots , a_n\}$, where a_i starts at time $s_i \geq 0$ and finishes at time $f_i > s_i$, find a maximal subset $A \subseteq S$ such that, for distinct activities $a_i, a_j \in A$, either $s_i \geq f_j$ or $s_j \geq f_i$
 - In other words, you want to find a largest possible subset of “compatible” activities (that do not overlap)

Convenient notations:
- Let a_0 be an imaginary activity finishing at time 0
- Let a_{n+1} be an imaginary activity starting at time ∞
- $S_{ij} = \{ a_k \in S : f_i < s_k < f_j \}
- Observe that $S_{0,n+1}$ contains all activities

Recursive Sol’n to AS Problem (as in Dynamic Programming)

- Assume activities sorted in increasing order of f_i
 - If they are not sorted, can do it in $O(n \log n)$ time
- Let $c[i,j]$ be the number of activities in the maximal solution for the subset S_{ij}
 - In other words, the largest number of compatible activities starting from time f_i finishing before time s_j

 Recursively, $c[i,j] =$
 - 0 if $S_{ij} = \emptyset$, e.g. if $j \geq i$
 - $\max_{i < k < j} \{ c[i,k] + c[k,j] + 1 \}$ otherwise

- What is the runtime of this solution?

Greedy Substructure in AS

- Let $f_m = \min\{f_k : a_k \in S_j \}$. That is, activity a_m has the earliest finishing time in S_j

 Claim 1: a_m is used in some maximal solution for the activities in S_{ij}
 - Proof sketch: Suppose a_m is the first activity in some maximal solution. It can safely be removed, and replaced with a_m

 Claim 2: $S_{jm} = \emptyset$
 - Proof sketch: Nothing else starting after a_m finishes before a_m

- Thus, always safe to include a_m, and solve the remaining problem for S_{ij} only
Greedy Sol’n to AS Problem

Recursive-AS(S_ij)

// Assumes S_ij sorted in order of increasing f_k
if S_ij = ∅
 return ∅

m = first activity in S_ij
return {a_m} ∪ Recursive-AS(S_mj)

Want to compute Recursive-AS(S_{0,n+1}) ...

What is the runtime? Is recursion necessary?

Examples: Optimal Prefix Codes

A prefix code is a prefix-free encoding of a character set (easily represented using a tree)
Prefix-free binary encodings correspond to placing the characters into leaves on some binary tree
The number of bits required to encode a string from character set C using a binary prefix code T is given by:
B(T) = ∑_{c∈C} f(c)d_T(c)

f(c) is the number of times character c occurs in the string
- d_T(c) is the depth of the leaf containing c
An optimal binary prefix code for a string is given by a tree T such that the value of B(T) is minimal for that string

Huffman Codes

A greedy solution to find the optimal prefix code:
Huffman(C[1 .. n])
// Each entry C[i] has an associated priority f[i]
Q ← C // Q is a min-priority queue
for i = 1 to n-1
allocate a new tree node z
left[z] = Extract-Min(Q)
right[z] = Extract-Min(Q)
f[z] = f[left[z]] + f[right[z]]
Insert(Q, z)
return Extract-Min(Q)

See CLRS for proof of correctness (sketched in class)

Pitfalls: The Knapsack Problem

The 0-1 knapsack problem: A thief has knapsack that holds at most W lbs. He can steal from a jewelry collection containing n items where the i-th item is worth v_i dollars and weighs w_i lbs. What is the most valuable way to pack the knapsack?

- If the thief is greedy, and packs the most valuable items first, will he get away with the most valuable loot?
- Can certainly be solved with dynamic programming

The fractional knapsack problem: As above, but the thief can steal a fraction of each item (e.g. gold dust).
- Think about dollars per lb, for each kind of item…
- Is this easier or harder to solve than before? Why?