Greedy Algorithms
Greed

• *Locally optimal* decisions are called *greedy*
 ▪ Short sighted strategy (e.g. thinking only one move ahead in a game), usually easy to implement
 ▪ Generally efficient, but…
 ▪ May not lead to a *globally optimal* solution
 • Sometimes, close enough to globally optimal anyway
• What are some examples of greedy algorithms?
 ▪ For the MST problem: Prim’s and Kruskal’s algorithms
 ▪ For the SSSP problem: Dijkstra’s algorithm
 • Remember, Dijkstra only works for graphs with no negative edge weights… why?
Greedy Technique

- Basic steps to finding efficient greedy algorithms:
 - Start by finding a dynamic programming style solution
 - Prove that at each step of the recursion, the min/max can be satisfied by a “greedy choice” (*greedy substructure*)
 - Show that only one recursive call needs to be made once the greedy choice is assumed. This is often natural when all the recursive calls are made by the min/max.
 - Find the recursive solution using the greedy choice
 - Convert to an iterative algorithm if possible

- More generally, taking the direct approach:
 - Show the problem is reduced to a subproblem via a greedy choice
 - Prove there is an optimal solution containing the greedy choice
 - Prove that combining the greedy choice with an optimal solution for the remaining subproblem yields an optimal solution
Examples: Activity Selection

• Given a set of activities $S = \{a_1, \ldots, a_n\}$, where a_i starts at time $s_i \geq 0$ and finishes at time $f_i > s_i$, find a maximal subset $A \subseteq S$ such that, for distinct activities $a_i, a_j \in A$, either $s_i \geq f_j$ or $s_j \geq f_i$
 - In other words, you want to find a largest possible subset of “compatible” activities (that do not overlap)

• Convenient notations:
 - Let a_0 be an imaginary activity finishing at time 0
 - Let a_{n+1} be an imaginary activity starting at time ∞
 - $S_{ij} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$
 - Observe that $S_{0, n+1}$ contains all activities
Recursive Sol’n to AS Problem
(as in Dynamic Programming)

• Assume activities sorted in increasing order of f_i
 ▪ If they are not sorted, can do it in $O(n \lg n)$ time
• Let $c[i, j]$ be the number of activities in the maximal solution for the subset S_{ij}
 ▪ In other words, the largest number of compatible activities starting from time f_i finishing before time s_j
• Recursively, $c[i,j] =$
 ▪ 0 if $S_{ij} = \emptyset$, e.g. if $j \geq i$
 ▪ $\max_{i < k < j} \{ c[i,k] + c[k,j] + 1 \}$ otherwise
• What is the runtime of this solution?
Greedy Substructure in AS

• Let $f_m = \min\{f_k : a_k \in S_{ij}\}$. That is, activity a_m has the earliest finishing time in S_{ij}
 ▪ Claim 1: a_m is used in some maximal solution for the activities in S_{ij}
 • Proof sketch: Suppose a_k is the first activity in some maximal solution. It can safely be removed, and replaced with a_m
 ▪ Claim 2: $S_{im} = \emptyset$
 • Proof sketch: Nothing else starting after a_i finishes before a_m

• Thus, always safe to include a_m, and solve the remaining problem for S_{mj} only
Greedy Sol’n to AS Problem

Recursive-AS(S_{ij})

// Assumes S_{ij} sorted in order of increasing f_k
if S_{ij} = ∅
 return ∅

m = first activity in S_{ij}
return \{a_m\} \cup \text{Recursive-AS}(S_{mj})

• Want to compute \text{Recursive-AS}(S_{0,n+1}) \ldots
 ▪ What is the runtime? Is recursion necessary?
Greedy Sol’n to AS Problem
(Iterative Version)

Greedy-AS(S)
// Assumes S sorted in order of increasing f_k
A = \{a_1\} ; \quad i = 1
for m = 2 to n
 if $s_m \geq f_i$ // a_m is compatible with a_i
 A = A \cup \{a_m\} ; \quad i = m
return A

• What is the runtime?
Examples: Optimal Prefix Codes

- A prefix code is a prefix-free encoding of a character set (easily represented using a tree)
- Prefix-free binary encodings correspond to placing the characters into leaves on some binary tree
- The number of bits required to encode a string from character set C using a binary prefix code T is given by:
 \[B(T) = \sum_{c \in C} f(c)d_T(c) \]
 - \(f(c) \) is the number of times character c occurs in the string
 - \(d_T(c) \) is the depth of the leaf containing c
- An optimal binary prefix code for a string is given by a tree T such that the value of \(B(T) \) is minimal for that string
Huffman Codes

• A greedy solution to find the optimal prefix code:

\[
\text{Huffman}(\ C[1 .. n] \)
\]

// Each entry \(C[i] \) has an associated priority \(f[i] \)

\[
Q \leftarrow C \quad // \ Q \text{ is a min-priority queue}
\]

for \(i = 1 \) to \(n-1 \)

allocate a new tree node \(z \)

\[
\text{left}[z] = \text{Extract-Min}(Q)
\]

\[
\text{right}[z] = \text{Extract-Min}(Q)
\]

\[
 f[z] = f[\text{left}[z]] + f[\text{right}[z]]
\]

\[
\text{Insert}(Q, z)
\]

return \(\text{Extract-Min}(Q) \)

• See CLRS for proof of correctness (sketched in class)
Pitfalls: The Knapsack Problem

• The 0-1 knapsack problem: A thief has knapsack that holds at most W lbs. He can steal from a jewelry collection containing n items where the i-th item is worth v_i dollars and weighs w_i lbs. What is the most valuable way to pack the knapsack?
 - If the thief is greedy, and packs the most valuable items first, will he get away with the most valuable loot?
 - Can certainly be solved with dynamic programming

• The fractional knapsack problem: As above, but the thief can steal a fraction of each item (e.g. gold dust).
 - Think about dollars per lb, for each kind of item…
 - Is this easier or harder to solve than before? Why?