Minimum Spanning Trees
• Given a connected graph G = (V,E) let \(w[u,v] \) specify the “weight” of an edge \((u,v) \in E\)
• A spanning tree for G is a subset \(T \subseteq E \) such that the graph \((V,T)\) is connected and acyclic
 • In other words, T is a tree containing all vertices in V
• The weight of spanning tree T is given by:
 \[W(T) = \sum_{(u,v) \in T} w[u,v] \]
• A Minimum Spanning Tree (MST) is a spanning tree of minimal weight

Growing an MST
• Start with an empty set of edges A, and repeatedly add “safe” edges, until A is a spanning tree
 • An edge \((u,v)\) is safe to add if it maintains the invariant that the set of edges A is a subset of some MST for G
 • Theorem 23.1 in CLRS:
 Let A be a subset of some MST for G, and let \((S, V-S)\) be any cut of G that respects A. If \((u,v)\) is a light edge crossing the cut then \((u,v)\) is safe for A.
 • Proof?
• How can we find such safe edges efficiently?

Prim’s Algorithm
MST-Prim(V,E,w,r) // r is to be the “root” of the MST
for all \(v \in V \)
key[v] = \(\infty \), \(\pi[v] = \text{NIL} \)
key[r] = 0
\(Q \leftarrow V \) // Q is a min-priority queue (priorities in key[V])
while \(Q \neq \emptyset \)
 \(u = \text{Extract-Min}(Q) \) // u already connected “safely”
 for all \(v \in \text{Adj}[u] \)
 if \(v \in Q \) and \(w[u,v] < \text{key}[v] \)
 \(\text{key}[v] = w[u,v] \), \(\pi[v] = u \) // Update priority of v!
return \(A = \{ (v, \pi[v]) : v \in V - \{r\} \} \)
• Runtime depends on the choice of Min-Priority-Queue
 • Can get \(O((|E|+|V|) \log |V|) \) using binary heaps

Kruskal’s Algorithm
MST-Kruskal(V,E,w)
A \(\leftarrow \emptyset \)
for all \(v \in V \)
Make-Set(v) // Each node initially in its own set
Sort E in non-decreasing order by weight w
for each \((u,v) \in E \) // processed in sorted order
 if Find-Set(u) \(\neq \) Find-Set(v) // if \(u,v \) in different sets
 \(A \leftarrow A \cup \{ (u,v) \} \) // \((u,v)\) is a safe edge, add it
 Union(u,v) // then merge the sets for u and v
return A
• Runtime depends on Make-Set/Find-Set/Union ops
 • More on those later…what about correctness?

The Single-Source Shortest Path (SSSP) Problem
• A path p is a sequence of vertices \((v_0,v_1,...,v_k)\) such that \((v_{i-1},v_i) \in E\) for \(i=1...k\)
 • Notation: \(u \leadsto v \) means a path from u to v
• The weight of a path p is \(w(p) = \sum_{i=1}^{k} w(v_{i-1},v_i) \)
• The shortest-path weight from u to v is \(\delta(u,v) = \min(w(u \leadsto v)) \)
• A shortest path p has weight \(w(p) = \delta(u,v) \)
• Single-Source Shortest Path Problem: Find the shortest paths from source vertex s to all other vertices in the graph
Properties of Shortest Paths and Path Relaxation

Relax(u,v,w) // Initially, forall v ≠ s: d[v] = ∞, π[v] = NIL, d[s] = 0
if d[v] > d[u] + w[u,v]
 d[v] = d[u] + w[u,v], π[v] = u

- Triangle Inequality: δ(s,v) ≤ δ(s,u) + w[u,v]
- Upper-bound Property: d[v] ≥ δ(s,v)
- Convergence: if s → u → v is a shortest path and d[u] = δ(s,u) invoking Relax(u,v,w) yields d[v]=δ(s,v)
- Path-Relaxation: if the edges of a shortest path from s to v are Relaxed in sequence, d[v] = δ(s,v)

Bellman-Ford

Bellman-Ford(V,E,w,s)
Initialize d[] and π[]
for i = 1 to |V| - 1
 for each (u,v) ∈ E
 Relax(u,v,w)
for each (u,v) ∈ E
 if d[v] > d[u] + w[u,v] return FALSE
return TRUE

- Returns true for any graph with no negative-weight cycles
- Runtime is O(|V| |E|)

SSSP for DAGs

DAG-Shortest-Paths(V,E,w,s)
topologically sort V // Can only do this for a DAG
Initialize d[] and π[]
for each u ∈ V // In topologically sorted order…
 forall v ∈ Adj[u]
 Relax(u,v,w)
- Correctness follows immediately from Path-Relaxation Property
- Runtime is Θ(|V|+|E|)

Dijkstra’s Algorithm

Dijkstra(V,E,w,s) // Compare to MST-Prim…
forall v ∈ V
 d[v] = ∞, π[v] = NIL
 d[s] = 0, S ← ∅
 Q ← V // Q is a min-priority queue (priorities in d[V])
 while Q ≠ ∅
 u = Extract-Min(Q) // d[u] already minimal
 S ← S ∪ {u}
 forall v ∈ Adj[u]
 Relax(u,v,w) // Update priority of v afterward!
- Works for graphs with no negative edge weights only
- Runtime same as MST-Prim