Trees and Graphs

Basic Definitions

- Tree: Any connected, acyclic graph \(G = (V,E) \)
 - \(|E| = |V| - 1 \)
- \(n \)-ary Tree: Tree s/t all vertices of degree \(\leq n+1 \)
 - A “root” has degree \(\leq n \)
- Binary Search Tree: A binary tree such that
 - If node \(y \) is the left child of node \(x \), \(\text{key}[y] \leq \text{key}[x] \)
 - If node \(z \) is the right child of node \(x \), \(\text{key}[x] \leq \text{key}[z] \)
- Inorder Traversal (for Binary Trees): Recursively process left child, process root, recursively process right child
 - Takes \(\Theta(|V|) \) time
 - Used with a BST to print values in sorted order
 - Other traversal methods include preorder and postorder

Searching a BST

Tree-Search(x, k)
if \(x = \text{NIL} \) or \(\text{key}[x] = k \) then return \(x \)
if \(k < \text{key}[x] \)
 return Tree-Search(left[x], k)
return Tree-Search(right[x], k)

- Eliminating tail recursion:

Tree-Search(x, k)
do
 if \(x = \text{NIL} \) or \(\text{key}[x] = k \) then return \(x \)
 if \(k < \text{key}[x] \) then \(x = \text{left}[x] \) else \(x = \text{right}[x] \)
loop
- What is the runtime?

Other operations on BSTs

- Some other easy operations to perform include:
 - Minimum
 - Left most node
 - Maximum
 - Symmetric to minimum
 - Successor
 - Minimum of the key’s right subtree if it exists, otherwise first ancestor such that the key lies in it’s left subtree
 - Predecessor
 - Symmetric to successor
 - What are the runtimes?

Inserting / Deleting BST Nodes

- Insert(z): Search down the tree from the root… from a node \(x \), move left if \(\text{key}[z] < \text{key}[x] \), else move right. Insert \(z \) in the first empty location encountered.
- Delete(z): If \(z \) has less than 2 children, splice it out. If \(z \) has 2 children, find node \(y = \text{Successor}(z) \) and splice \(z \) out, then replace \(z \) with \(y \).
 - Note that \(y \) cannot have 2 children, so it can always be spliced (this is because \(y \) will be the minimum element in \(z \)’s right subtree by definition of Successor, thus \(y \) has no left child).

Expected Case for a BST

- Assume \(n \) nodes are inserted in random order. How many comparisons are performed?
- Consider the first arrival (the root). How many subsequent nodes go to the left/right of it?
 - Root is the \(k \)-th smallest with probability \(1/n \)
 - The root acts like the “pivot” in QuickSort, all elements are compared against with it, then sent left or right
- How many total comparisons?
 \[T(n) = n-1 + \left(\frac{1}{n} \right) \sum_{i=1}^{n} \left[T(i-1) + T(n-i) \right] \]
- We have solved this before: \(T(n) = O(n \log n) \)
2-3 Trees

- A “balanced” search tree, with special properties:
 - All internal nodes have 2 or 3 children
 - All leaves are at the same depth
 - Plus standard search tree property (ordered subtrees)
 - “Guides” can be used to improve efficiency
 - Each node remembers the maximum key in its subtree
 - \(O(\log n) \) Search/Insert/Delete operations
 - See additional notes in handout for details
 - I will demonstrate in class
 - Useful as a “Dictionary” data structure

General Directed Graphs

- May contain cycles, which often need to be handled as a special case
- Adjacency Matrix vs Adjacency List representation
 - Matrix requires \(\Theta(|V|^2) \) space
 - Constant time to search for existence of an edge
 - List requires \(\Theta(|V| + |E|) \) space
 - Needs \(O(|E|) \) time in the worst case to search an edge
- Traversal techniques:
 - Breadth First Search (BFS)
 - Depth First Search (DFS)

BFS

- Given graph \(G = (V,E) \) and a source vertex \(s \in V \):
 - \(\text{BFS}(G, s) \)
 - for all \(x \in V \) \(\text{color}[x] = \text{WHITE}, \ d[x] = \infty, \ n[x] = \text{NIL} \)
 - \(Q = \emptyset \) \(\text{// Initialize an empty FIFO queue Q} \)
 - \(d[s] = 0, \ Enqueue(Q, s) \)
 - \(Q = \emptyset \)
 - for all \(v \in \text{Adj}[u] \)
 - if \(\text{color}[v] = \text{WHITE} \)
 - \(\text{color}[v] = \text{GRAY} \)
 - \(d[v] = d[u] + 1, \ n[v] = u, \ Enqueue(Q, v) \)
 - \(\text{color}[u] = \text{BLACK} \)

- Runtime? \(O(|V| + |E|) \)
- Useful shortest path property

DFS

- Given graph \(G = (V,E) \) and a source vertex \(s \in V \):
 - \(\text{DFS-VISIT}(u) \) \(\text{// Not the full DFS procedure (see CLRS p. 541) \}
 - \(\text{// Assume nodes } x \text{ were originally initialized with} \)
 - \(\text{// color}[x] = \text{WHITE}, \ n[x] = \text{NIL}, \text{ and that global variable time = 0} \)
 - \(\text{color}[u] = \text{GRAY} \)
 - \(\text{time} = \text{time} + 1 \)
 - for all \(v \in \text{Adj}[u] \)
 - if \(\text{color}[v] = \text{WHITE} \)
 - \(\text{color}[v] = u \)
 - \(\text{DFS-VISIT}(v) \)
 - \(\text{color}[u] = \text{BLACK}, \text{ time} = \text{time} + 1 \)
 - \(f[u] = \text{time} \)

- Runtime? \(O(|V| + |E|) \)

Observations about DFS

- DFS can also be implemented by replacing the FIFO queue in BFS with a LIFO stack
- “Parenthesis structure” (see CLRS p. 543)
 - Classification of edges. Edge \((u,v) \) in a tree \(T \) is a…
 - Tree edge if \((u,v) \in T \)
 - In a DFS tree, this means \(v \) is first visited coming from \(u \)
 - Forward edge if \(u \) is an ancestor of \(v \) but \((u,v) \not\in T \)
 - In a DFS tree, means \(v \) was first visited by a descendent of \(u \)
 - Back edge if \(v \) is an ancestor of \(u \) in \(T \)
 - Exists if and only if there is a cycle in \(G \)
 - Cross edge if it is none of the above

Topological Sort

- A topological sort of a directed acyclic graph \(G = (V,E) \) is an ordering of \(V \) such that if \((u,v) \in E \)
 then \(u \) appears before \(v \) in the sort
- DFS the graph \(G \), and sort \(V \) in order of decreasing finishing time (i.e. last to be “blackened” is first)
- Runtime is \(\Theta(|V|+|E|) \) for DFS + \(O(|V|) \) time to maintain a stack containing blackened vertices
Strongly Connected Components

- A strongly connected component is a *maximal* set of vertices \(C \subseteq V \) such that for any pair of distinct vertices \(u \) and \(v \) in \(C \), there is a path from \(u \) to \(v \) and a path from \(v \) to \(u \) in \(G \).
- Find SCCs by doing a complete DFS of \(G \) to get a topological sort of \(V \), and DFSing the *transpose* graph of \(G \) in the topologically sorted order.
 - Be sure to read details in CLRS, I will only sketch the procedure and proof in class.