Trees and Graphs
Basic Definitions

- **Tree**: Any connected, acyclic graph $G = (V,E)$
 - $|E| = |V|-1$
- **n-ary Tree**: Tree s.t all vertices of degree $\leq n+1$
 - A “root” has degree $\leq n$
- **Binary Search Tree**: A binary tree such that
 - If node y is the left child of node x, $\text{key}[y] \leq \text{key}[x]$
 - If node z is the right child of node x, $\text{key}[x] \leq \text{key}[z]$
- **Inorder Traversal** (for Binary Trees): Recursively process left child, process root, recursively process right child
 - Takes $\Theta(|V|)$ time
 - Used with a BST to print values in sorted order
 - Other traversal methods include preorder and postorder
Searching a BST

Tree-Search(x, k)
 if x == NIL or key[x] == k then return x
 if k < key[x]
 return Tree-Search(left[x], k)
 return Tree-Search(right[x], k)

• Eliminating tail recursion:

Tree-Search’(x, k)
 do
 if x == NIL or key[x] == k then return x
 if k < key[x] then x = left[x] else x = right[x]
 loop

• What is the runtime?
Other operations on BSTs

• Some other easy operations to perform include:
 ▪ Minimum
 • Left most node
 ▪ Maximum
 • Symmetric to minimum
 ▪ Successor
 • Minimum of the key’s right subtree if it exists, otherwise first ancestor such that the key lies in it’s left subtree
 ▪ Predecessor
 • Symmetric to successor

• What are the runtimes?
Inserting / Deleting BST Nodes

- **Insert(z):** Search down the tree from the root... from a node x, move left if key[z] < key[x], else move right. Insert z in the first empty location encountered.

- **Delete(z):** If z has less than 2 children, *splice* it out. If z has 2 children, find node y = Successor(z) and splice y out, then replace z with y.
 - Note that y cannot have 2 children, so it can *always* be spliced (this is because y will be the *minimum* element in z’s right subtree by definition of Successor, thus y has no left child).
Expected Case for a BST

• Assume n nodes are inserted in random order. How many comparisons are performed?
• Consider the first arrival (the root). How many subsequent nodes go to the left/right of it?
 ▪ Root is the k-th smallest with probability 1/n
 ▪ The root acts like the “pivot” in QuickSort, all elements are compared against with it, then sent left or right
• How many total comparisons?
 \[T(n) = n-1 + \frac{1}{n} \sum_{i=1}^{n} [T(i-1)+T(n-i)] \]
• We have solved this before: \(T(n) = O(n \log n) \)
2-3 Trees

- A “balanced” search tree, with special properties:
 - All *internal* nodes have 2 or 3 children
 - All leaves are at the same depth
 - Plus standard search tree property (ordered subtrees)
- “Guides” can be used to improve efficiency
 - Each node remembers the maximum key in its subtree
- \(O(\log n)\) Search/Insert/Delete operations
 - See additional notes in handout for details
 - I will demonstrate in class
- Useful as a “Dictionary” data structure
General Directed Graphs

• May contain cycles, which often need to be handled as a special case

• Adjacency Matrix vs Adjacency List representation
 ▪ Matrix requires $\Theta(|V|^2)$ space
 • Constant time to search for existence of an edge
 ▪ List requires $\Theta(|V| + |E|)$ space
 • Needs $O(|E|)$ time in the worst case to search an edge

• Traversal techniques:
 ▪ Breadth First Search (BFS)
 ▪ Depth First Search (DFS)
BFS

- Given graph $G = (V,E)$ and a source vertex $s \in V$:

 $\text{BFS}(V,E, s)$

 $\forall x \in V \ \text{color}[x] = \text{WHITE}, \ d[x] = \infty, \ \pi[x] = \text{NIL}$

 $Q = \emptyset$ // Initialize an empty FIFO queue Q

 $d[s] = 0, \ \text{Enqueue}(Q, s)$

 while $Q \neq \emptyset$

 $u = \text{Dequeue}(Q)$

 $\forall v \in \text{Adj}[u]$

 if $\text{color}[v] == \text{WHITE}$

 $\text{color}[v] = \text{GRAY}$

 $d[v] = d[u] + 1, \ \pi[v] = u, \ \text{Enqueue}(Q, v)$

 $\text{color}[u] = \text{BLACK}$

- Runtime? $O(|V| + |E|)$

- Useful **shortest path** property
DFS

- Given graph $G = (V,E)$ and a source vertex $s \in V$:

 $\text{DFS-VISIT}(u)$ // Not the full DFS procedure (see CLRS p. 541)
 // Assume nodes x were originally initialized with
 // $\text{color}[x] = \text{WHITE}$, $\pi[x] = \text{NIL}$, and that global variable $\text{time} = 0$
 $\text{color}[u] = \text{GRAY}$
 $\text{time} = \text{time} + 1$
 $\forall v \in \text{Adj}[u]
 \quad \text{if } \text{color}[v] == \text{WHITE}$
 \hspace{1em} $\pi[v] = u$
 \hspace{1em} $\text{DFS-VISIT}(v)$
 $\text{color}[u] = \text{BLACK}$, $\text{time} = \text{time} + 1$, $f[u] = \text{time}$

- Runtime? $O(|V| + |E|)$
Observations about DFS

- DFS can also be implemented by replacing the FIFO queue in BFS with a LIFO stack
- “Parenthesis structure” (see CLRS p. 543)
- Classification of edges. Edge \((u,v)\) in a tree \(T\) is a...
 - **Tree edge** if \((u,v) \in T\)
 - In a DFS tree, this means \(v\) is first visited coming from \(u\)
 - **Forward edge** if \(u\) is an ancestor of \(v\) but \((u,v) \notin T\)
 - In a DFS tree, means \(v\) was first visited by a descendent of \(u\)
 - **Back edge** if \(v\) is an ancestor of \(u\) in \(T\)
 - Exists if and only if there is a cycle in \(G\)
 - **Cross edge** if it is none of the above
Topological Sort

• A topological sort of a directed acyclic graph $G=(V,E)$ is an ordering of V such that if $(u,v) \in E$ then u appears before v in the sort
• DFS the graph G, and sort V in order of decreasing finishing time (i.e. last to be “blackened” is first)
• Runtime is $\Theta(|V|+|E|)$ for DFS + $O(|V|)$ time to maintain a stack containing blackened vertices
Strongly Connected Components

- A strongly connected component is a *maximal* set of vertices \(C \subseteq V \) such that for any pair of distinct vertices \(u \) and \(v \) in \(C \), there is a path from \(u \) to \(v \) and a path from \(v \) to \(u \) in \(G \).
- Find SCCs by doing a complete DFS of \(G \) to get a topological sort of \(V \), and DFSing the *transpose* graph of \(G \) in the topologically sorted order.
 - Be sure to read details in CLRS, I will only sketch the procedure and proof in class.