Sorting
The Sorting Problem

• Input is a sequence of n items (a_1, a_2, \ldots, a_n)
• The mapping we want is determined by a “comparison” operation, denoted by \leq
• Output is a sequence (b_1, b_2, \ldots, b_n) such that:
 ▪ $\{ a_1, a_2, \ldots, a_n \} = \{ b_1, b_2, \ldots, b_n \}$ (i.e. output is a permutation of the input sequence)
 ▪ $b_1 \leq b_2 \leq \ldots \leq b_n$
Solutions so far...

- Insertion sort
 - Requires $O(n^2)$ comparisons in worst/average case
- Bubble Sort (homework)
 - Requires $O(n^2)$ comparisons in all cases
- Merge Sort
 - Requires $O(n \log n)$ comparisons in the worst case
 - Unfortunately, must copy data

Can we sort in place in $O(n \log n)$ time?
A Useful Data Structure: Heaps

• Complete binary tree representation of an array
 ▪ Well, nearly complete… (array lengths not exactly 2^h)
 ▪ Notation: Data contained in an array $A[1..n]$
 • Parent$(i) = \lceil i/2 \rceil$, Left$(i) = 2i$, Right$(i) = 2i + 1$

• Max Heap Property: $A[i] \leq A[\text{Parent}(i)]$
 ▪ Build-Max-Heap imposes the property on unsorted A
 • Runs in time $O(n)$
 ▪ Max-Heapify is a subroutine called by Build-Max-Heap
 • Runs in time $O(\log n)$

• Read the textbook for info on Priority Queues
The Max-Heapify Subroutine

Max-Heapify(A[1..n], i)
L = left(i), R = right(i)
largest = i
largest = L
if R ≤ n and A[R] ≺ A[largest]
largest = R
if largest ≠ i
 exchange A[i] with A[largest]
Max-Heapify(A[1..n], largest)
Building a Max Heap

- Start from the “leaves” and build upwards
 - No need to actually heapify the leaves, as they are already valid max heaps… so we will skip them

\[
\text{Build-Max-Heap}(A[1..n]) \\
\text{for } i = ⌊n/2⌋ \text{ downto } 1 \\
\text{Max-Heapify}(A, i)
\]
Heapsort

• Can use Max-Heaps to sort efficiently, in-place

Heapsort(A[1..n])
 Build-Max-Heap(A) // O(n)
 for i = n downto 2
 Max-Heapify(A[1..i-1], 1) // O(log n)

• Worst case runtime is $O(n \log n)$ (due to the loop)
• See the textbook for detailed proofs and analysis
Quicksort

- Often performs best in the real world
 - Small constants + many optimized implementations
- Uses divide and conquer, like Mergesort
- Unlike Mergesort, can sort in place

\[
\text{QuickSort}(A[1..n])
\]
\[
\text{if } n > 1
\]
\[
\text{q} = \text{Partition}(A[1..n])
\]
\[
\text{QuickSort}(A[1 \ldots q-1])
\]
\[
\text{QuickSort}(A[q+1 \ldots n])
\]

- The Partition routine does all the work...
Partitioning

\[\text{Partition}(A[1..n]) \]
\[\quad x = A[n], \ i = 0 \quad // \ x \text{ is known as the “pivot”} \]
\[\text{for } j = 1 \text{ to } n-1 \]
\[\quad \text{if } A[j] \leq x \quad // \ Other \ elements \ compared \ to \ the \ pivot \]
\[\quad \quad i = i + 1 \]
\[\quad \text{exchange } A[i] \text{ with } A[j] \]
\[\text{exchange } A[i+1] \text{ with } A[n] \]
\[\text{return } i+1 \]

- Observe that \(O(n) \) comparisons are performed
- If \(q=\text{Partition}(A[1..n]) \) then \(A[1..q-1] \leq A[q] \leq A[q+1..n] \)

Shabsi Walfish
NYU - Fundamental Algorithms
Summer 2005
Quicksort: Correctness

Quicksort(A[1..n])
 if n > 1
 q = Partition(A[1..n])
 Quicksort(A[1..q-1])
 Quicksort(A[q+1..n])

 • Assuming Partition is correct, can argue correctness of Quicksort via induction, with base case n = 1
 ▪ Inductive Hypothesis: Quicksort correctly sorts up to size n-1
 ▪ Use correctness of Partition to complete the inductive step: If q=Partition(A[1..n]) then A[1..q-1] ≤ A[q] ≤ A[q+1..n]

 • Detailed analysis of Partition given in CLRS
QuickSort: The Worst Case

QuickSort(A[1..n])
 if n > 1
 q = Partition(A[1..n])
 QuickSort(A[1 .. q-1])
 QuickSort(A[q+1 .. n])

• \(T(n) = \max_{1 \leq q \leq n} [T(q-1) + T(n-q)] + O(n) \)
• Can use proof by induction to show this \(O(n^2) \)
• Alternatively, use a graphical argument…
Quicksort: Expected Case (1)

Quicksort(A[1..n])
 if n > 1
 q = Partition(A[1..n])
 Quicksort(A[1 .. q-1])
 Quicksort(A[q+1 .. n])

• Method 1: Use indicator random variables
 ▪ Let \(z_1 \leq z_2 \leq \ldots \leq z_n \) denote the sorted elements of A
 ▪ Let \(X_{ij} \) indicate a comparison between \(z_j \) and \(z_i \)
 ▪ Total number of comparisons: \(X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \)
 ▪ Find \(E[X] \) by computing \(\Pr\{X_{ij}\} \) (see CLRS for details)
Quicksort: Expected Case (2)

QuickSort(A[1..n])
 if n > 1
 q = Partition(A[1..n])
 QuickSort(A[1 .. q-1])
 QuickSort(A[q+1 .. n])

• Method 2: Solve the recurrence for expected case
 ▪ Observe that pivot location will be random
 ▪ Observe that recursive inputs are also randomly ordered
 \[T(n) = O(n) + \left([T(0)+T(n-1)] + [T(1)+T(n-2)] + \ldots + [T(n-1)+T(0)] \right) / n \]
 \[= O(n) + \left(\frac{2}{n} \right) \sum_{i=0}^{n-1} T(i) \]
 ▪ Solve using Telescoping and Transformations (somewhat hard)
Quicksort: Expected Case (3)

QuickSort(A[1..n])
 if n > 1
 q = Partition(A[1..n])
 QuickSort(A[1..q-1])
 QuickSort(A[q+1..n])

• Method 3: Recursion Trees
 ▪ Much easier, but still needs some stuff from probability
 ▪ This will be done on the board. It is not in CLRS… see the handout to be distributed in class

• Conclusion: Expected runtime is O(n log n)
Lower Bounds for Sorting

• The worst case runtime for our sorting algorithms so far was $O(n \log n)$ or worse. Can we do better?
 ▪ What is the best that can be done? Should we even try?
• Assume that we can only compare by using the \leq operator. How many times must we apply it, in the worst case, if we always want a correct output?
• Observation: There are $n!$ possible input orderings
• Observation: The \leq operator has a binary output
• Consider the “decision tree” of the program
Decision Tree using Comparisons

- Result of each \leq operation determines a single "left" or "right" branch in the program flow
- Model program branching with a tree
 - Only two choices per operation, so it is a binary tree
- Final outputs (leaves) are the sorting permutations applied to the input sequence. Requires at least $n!$ leaves to correctly sort each of the $n!$ possible input orderings
- The height of the tree is the number of comparisons performed in the worst case. What is the minimum height of a binary tree with $n!$ leaves?
 - A binary tree of height h has at most 2^h leaves, and we require at least $n!$ leaves, so we have $2^h \geq n!$, and thus $h = \Omega(n \log n)$
- Thus, worst case requires $h = \Omega(n \log n)$ comparisons
Breaking the $\Omega(n \log n)$ Barrier

- **Counting Sort**
 - Runtime is always $\Theta(n)$.
 - Sorts integers in the range $0..k$ for $k = O(n)$

- **Bucket Sort (aka Binsort)**
 - Expected runtime is $\Theta(n)$
 - Sorts floats *uniformly distributed* over a fixed range

- **Radix Sort**
 - Runs in $\Theta(n)$ time
 - Sorts d-digit numbers, where each digit is in the range $0..k-1$, for any constant d and for $k = O(n)$
Counting Sort

Counting-Sort(A[1..n], k)
B[1..n], C[0..k] = {0, ..., 0}
for j = 1 to n
 C[A[j]] = C[A[j]] + 1
for i = 1 to k
 C[i] = C[i] + C[i-1]
for j = n downto 1
 B[C[A[j]]] = A[j]
 C[A[j]] = C[A[j]] − 1
return B[1..n]
Bucket Sort

- Without much loss of generality, assume inputs are in the interval $[0,1)$

Bucket-Sort($A[1..n]$)
Let $B[0..n-1]$ be an array of (initially empty) lists
for $i = 1$ to n
 insert $A[i]$ into $B[\lfloor n*A[i] \rfloor]$
for $i = 0$ to $n-1$
 sort list $B[i]$ with insertion sort
return concatenation of sorted lists $B[1], \ldots, B[n-1]$

- If inputs are uniformly distributed, expect $\Theta(n)$ runtime
Radix Sort

• Simple, but counter-intuitive algorithm
 ▪ Recall, we are sorting d-digit numbers in base k

Radix-Sort(A[1..n], d)
for i = 1 to d
 use a stable sort to sort A[1..n] on digit i

• Runtime depends on which stable sort is used
 ▪ Can naturally use a counting sort, and if \(k = O(n) \) that will take \(O(n) \) time per iteration of the loop
 ▪ Since \(d \) is constant, looping \(d \) times is irrelevant