Selection and Hashing

The Selection Problem
- Input is a set of n distinct items \{a_1, a_2, \ldots, a_n\} and an integer i, with 1 \leq i \leq n
- Output is an element x (taken from the input set) such that x is larger than exactly i-1 elements of the input set (i.e. x is the i-th largest element)
 - Min and Max are special cases (with i=1 and n, resp.)

Selection in Expected Linear Time

\texttt{Randomized-Select}(A[1..n], i)
- if \(n = 1\) then return \(A[1]\)
- \(q = \text{Randomized-Partition}(A[1..n])\)
- if \(i = q\) then return \(A[q]\)
- if \(i < q\) then return \(\text{Randomized-Select}(A[1..q-1], i)\)
- else return \(\text{Randomized-Select}(A[q+1..n], i - q)\)
- What is the worst case runtime? ____
- What is expected runtime?
 - \textit{Randomized-Partition} selects from \(n\) possible pivots uniformly
 - Pretend the “worst case” always happens in the conditional
 - \(E[T(n)] \leq O(n) + \frac{1}{n} \sum_{d=0}^{n-1} T(\max(q-1,n-q))\)
 - Prove \(E[T(n)] = O(n)\) by induction… see CLRS for details

Selection in Worst Case Linear Time
- A high level description of algorithm \texttt{Select}(A[1..n], i):
 1. Divide input array \(A\) into \(n/5\) groups of 5 elements each
 2. Find the medians of each of the small (5 element) groups. Observe this takes constant time per group, and is thus an \(O(n)\) time operation. Call the set of all \(n/5\) of these medians \(X\).
 3. Recursively call \texttt{Select}(\(X, n/2\)) to find the median of \(X\). Call this median \(x\) (it is a “median of medians”).
 4. Partition \(A\) using \(x\) as the pivot value. Let \(q\) be the position of the pivot in the partitioned array (i.e. \(x\) is the \(q\)-th largest, and we have \(A[q] = x\) after partitioning). This takes time \(O(n)\).
 5. If \(i = q\) then return \(x\). Otherwise, call select recursively:
 - if \(i < q\) return \(\text{Select}(A[1..q-1], i)\)
 - else return \(\text{Select}(A[q+1..n], i - q)\)
- See CLRS for details of the runtime analysis
 - I will only sketch this in class

Basic Data Structures
- Stacks
 - LIFO – Last In First Out
 - Constant time per “push” or “pop” operation
- Queues
 - FIFO – First In First Out
 - Constant time per enqueue / dequeue operation
- Priority Queues
 - Highest Priority at any given time gets out first
 - Using heaps, \(O(\log n)\) time per operation
- (Doubly) Linked Lists
 - Takes \(O(n)\) time to find an item, constant time to insert new ones
- Trees
- (Directed) Graphs

Hash Tables
- Generalized notion of arrays
 - Let \(U\) denote the set of all data keys (the “universe”)
 - Let \(T[0..m-1]\) be an array (or “table”) of size \(m\)
 - \(n\) distinct keys \(k_1, \ldots, k_n \in U\) must be stored in the table
 - “Direct Addressing” is natural, but inefficient
 - Requires \(m = |U|\), so storage requirements are \(O(|U|)\)
 - Hashing increases storage efficiency when \(n << |U|\)
 - A hash function \(h\) maps \(U\) into \(Z_m = \{0, \ldots, m-1\}\)
 - For this to be useful, we require that \(m < |U|\)
 - Thus key \(k\) can be stored in \(T[h(k)]\)
 - Since \(|U| > m\), there must be some collisions
Collision Resolution by Chaining

- Make each table entry a linked list
 - Key k is present if it is in the linked list T[h(k)]
 - To insert k in the table, add it to the front of T[h(k)]
 - To find key k, search the linked list in T[h(k)]
 - To delete key k, find it and then remove it from the linked list

- What is the worst case runtime?
 - h is constant time (it is independent of n)
 - Insert is constant time, Find is O(n) if O(n) keys collide

- What is the expected runtime if keys hash uniformly?
 - Define the load factor α to be n/m
 - Let u_j denote the length of the list T[j]
 - Clearly u_j = Σ_r^m u_j
 - Easy to see that E[u_j] = α for j = 0, ..., m-1
 - Expected search time is thus Θ(1+α)

[See detailed CLRS analysis, to be sketched in class]

Shashi Walter
NYU - Fundamental Algorithms
Summer 2005

Obtaining Uniform Hashing

- If keys are uniformly distributed in [0,1):
 - h(k) = [km] (could handle other intervals easily too)
- Other ideas (must choose the constants carefully):
 - Division method: h(k) = k mod m
 - Multiplication method: h(k) = [m (kA mod 1)]

- A general method: Universal Hashing
 - Define a hash family H containing many hash functions
 - Fix keys k1, k2, then choose a function h ∈ H at random
 - We say H is universal if Pr[h(k1) = h(k2)] = 1/m

- Read CLRS 11.3.3

Shashi Walter
NYU - Fundamental Algorithms
Summer 2005

Designing Universal Hash Families

- Brief intro to number theory required (CLRS 31.3, 31.4)
- Let p be a prime, and Z^n = {0, ..., p-1}, Z^*_p = {1, ..., p-1} p
- Choose a large prime p such that p > |U| > m
- Let H_{uni} contain functions h_{uni}(k) where:
 h_{uni}(k) = [(ak + b) mod p] mod m

- What can cause this hash function to collide?
 - Let r = (ak + b) mod p, s = (ak' + b) mod p
 - For uniform (a,b) ∈ Z_p x Z_p, we get uniform (r,s) ∈ Z_p x Z_p
 - Can show this by solving for (a,b) in terms of (r,s)
 - Can show this by counting how many pairs from Z_p x Z_p collide mod m

Shashi Walter
NYU - Fundamental Algorithms
Summer 2005

(Linear) Open Addressing

- Technique for α ≤ 1 only (i.e. n ≤ m)
- Each table entry contains at most one key
- Insert: If T[h(k)] is empty, insert there. Otherwise look for the next empty spot in T, and insert there.
- Find: If T[h(k)] is empty or contains k, done. Otherwise, continue searching the next entry until either k or an empty slot is found.
- Performance gets much worse as α approaches 1
- Can use more advanced techniques... see CLRS

Shashi Walter
NYU - Fundamental Algorithms
Summer 2005

Perfect Hashing

- Worst case time to Insert and Find is constant
- Requires that the set of keys be fixed for all time
 - e.g. the English dictionary
- Uses a “secondary” hash table instead of a linked list (as in chaining), for each of the entries in T
 - T[j] contains a secondary hash table S_j
 - Choose a universal hash function h for table T
 - Make table S_j of size m_j = n^2
 - Choose a separate universal hash function h_j for each table S_j... keep choosing a new h_j until no collisions occur in S_j
 - Can show total expected storage will be O(n), including the space to store the list of n^2 universal hash functions

Shashi Walter
NYU - Fundamental Algorithms
Summer 2005