Selection and Hashing
The Selection Problem

• Input is a set of n distinct items $\{a_1, a_2, \ldots, a_n\}$ and an integer i, with $1 \leq i \leq n$

• Output is an element x (taken from the input set) such that x is larger than exactly $i-1$ elements of the input set (i.e. x is the i-th largest element)
 ▪ Min and Max are special cases (with $i=1$ and n, resp.)
Selection in Expected Linear Time

Randomized-Select(A[1..n], i)
 if n == 1 then return A[1]
 q = Randomized-Partition(A[1..n])
 if i == q then return A[q]
 if i < q then return Randomized-Select(A[1..q-1], i)
 else return Randomized-Select(A[q+1..n], i - q)

• What is the worst case runtime? ____
• What is expected runtime?
 ▪ Randomized-Partition selects from n possible pivots uniformly
 ▪ Pretend the “worst case” always happens in the conditional
 ▪ $E[T(n)] \leq O(n) + \frac{1}{n} \sum_{q=1}^{n} T(\max(q-1,n-q))$
 ▪ Prove $E[T(n)] = O(n)$ by induction… see CLRS for details
Selection in **Worst Case Linear Time**

- A high level description of algorithm `Select(A[1..n], i)`:
 1. Divide input array `A` into `n/5` groups of 5 elements each
 2. Find the medians of each of the small (5 element) groups. Observe this takes constant time per group, and is thus an `O(n)` time operation. Call the set of all `n/5` of these medians `X`.
 3. Recursively call `Select(X,n/2)` to find the median of `X`. Call this median `x` (it is a “median of medians”).
 4. Partition `A` using `x` as the pivot value. Let `q` be the position of the pivot in the partitioned array (i.e. `x` is the `q`-th largest, and we have `A[q] == x` after partitioning). This takes time `O(n)`.
 5. If `i == q` then return `x`. Otherwise, call select recursively:
 - if `i < q` return `Select(A[1..q-1], i)`
 - else return `Select(A[q+1,n], i - q)`

- See CLRS for details of the runtime analysis
 - I will only sketch this in class
Basic Data Structures

- **Stacks**
 - LIFO – Last In First Out
 - Constant time per “push” or “pop” operation

- **Queues**
 - FIFO – First In First Out
 - Constant time per enqueue / dequeue operation

- **Priority Queues**
 - Highest Priority at any given time gets out first
 - Using heaps, $O(\log n)$ time per operation

- **(Doubly) Linked Lists**
 - Takes $O(n)$ time to find an item, constant time to insert new ones

- **Trees**

- **(Directed) Graphs**
Hash Tables

• Generalized notion of arrays
 ▪ Let U denote the set of all data keys (the “universe”)
 ▪ Let $T[0..m-1]$ be an array (or “table”) of size m
 ▪ n distinct keys $k_1, \ldots, k_n \in U$ must be stored in the table
• “Direct Addressing” is natural, but inefficient
 ▪ Requires $m = |U|$, so storage requirements are $O(|U|)$
• Hashing increases storage efficiency when $n \ll |U|$
 ▪ A hash function h maps U into $\mathbb{Z}_m = \{0, \ldots, m-1\}$
 • For this to be useful, we require that $m < |U|$
 ▪ Thus key k can be stored in $T[h(k)]$
 ▪ Since $|U| > m$, there must be some collisions
Collision Resolution by Chaining

- Make each table entry a linked list
 - Key k is present if it is in the linked list T[h(k)]
 - To Insert k in the table, add it to the front of T[h(k)]
 - To Find key k, search the linked list in T[h(k)]
 - To Delete key k, Find it and then remove it from the linked list

- What is the worst case runtime?
 - h is constant time (it is independent of n)
 - Insert is constant time, Find is O(n) if O(n) keys collide

- What is the expected runtime if keys hash uniformly?
 - Define the load factor α to be n/m
 - Let n_j denote the length of the list $T[j]$
 - Clearly $n = \sum_{j=0}^{m} n_j$
 - Easy to see that $E[n_j] = \alpha$ for $j = 0, \ldots, m-1$
 - Expected search time is thus $\Theta(1+\alpha)$
 - See detailed CLRS analysis, to be sketched in class
Obtaining Uniform Hashing

• If keys are uniformly distributed in $[0, 1)$:
 - $h(k) = \lfloor km \rfloor$ (could handle other intervals easily too)
• Other ideas (must choose the constants carefully):
 - Division method: $h(k) = k \mod m$
 - Multiplication method: $h(k) = \lfloor m \cdot (kA \mod 1) \rfloor$
• A general method: Universal Hashing
 - Define a hash family \mathcal{H} containing many hash functions
 - Fix keys k_1, k_2, then choose a function $h \in \mathcal{H}$ at random
 - We say \mathcal{H} is universal if $\Pr\{h(k_1) = h(k_2)\} = 1/m$
 - Read CLRS 11.3.3
Designing Universal Hash Families

• Brief intro to number theory required (CLRS 31.3, 31.4)
• Let p be a prime, and $\mathbb{Z}_p = \{0, \ldots, p-1\}$, $\mathbb{Z}_p^* = \{1, \ldots, p-1\}$
• Choose a large prime p such that $p \geq |U| > m$
• Let $\mathcal{H}_{p,m}$ contain functions $h_{a,b}(k)$ where:
 $h_{a,b}(k) = [(ak + b) \mod p] \mod m$
• What can cause this hash function to collide?
 ▪ Let $r = (ak_1 + b) \mod p$, $s = (ak_2 + b) \mod p$
 ▪ For uniform $(a,b) \in \mathbb{Z}_p^* \times \mathbb{Z}_p$ we get uniform $(r,s) \in \mathbb{Z}_p \times \mathbb{Z}_p$
 • Can show this by solving for (a,b) in terms of (r,k_1) and (s,k_2)
 ▪ Collision implies $(r = s) \mod m$
 ▪ For random $(r,s) \in \mathbb{Z}_p \times \mathbb{Z}_p$ this happens with probability $1/m$
 • Can show this by counting how many pairs from $\mathbb{Z}_p \times \mathbb{Z}_p$ collide $\mod m$
(Linear) Open Addressing

- Technique for $\alpha \leq 1$ only (i.e. $n \leq m$)
- Each table entry contains at most one key
- Insert: If $T[h(k)]$ is empty, insert there. Otherwise look for the next empty spot in T, and insert there.
- Find: If $T[h(k)]$ is empty or contains k, done. Otherwise, continue searching the next entry until either k or an empty slot is found.
- Performance gets much worse as α approaches 1
- Can use more advanced techniques… see CLRS
Perfect Hashing

- *Worst case* time to Insert and Find is *constant*
- Requires that the set of keys be fixed for all time
 - e.g. the English dictionary
- Uses a “secondary” hash table instead of a linked list (as in chaining), for each of the entries in T
 - $T[j]$ contains a secondary hash table S_j
 - Choose a universal hash function h for table T
 - Make table S_j of size $m_j = n_j^2$
 - Choose a separate universal hash function h_j for each table S_j… keep choosing a new h_j until no collisions occur in S_j
 - Can show total expected storage will be $O(n)$, including the space to store the list of $n+1$ universal hash functions
- No collisions occur in secondary tables, so the proper location for any key can be found in two lookups