Introduction

Example Problem: Sorting

- Input is a sequence of n items \((a_1, a_2, \ldots, a_n) \)
- The mapping we want is determined by a “comparison” operation, denoted by \(\leq \)
- Output is a sequence \((b_1, b_2, \ldots, b_n) \) such that:
 - \(\{ a_1, a_2, \ldots, a_n \} = \{ b_1, b_2, \ldots, b_n \} \)
 (i.e. output is a permutation of the input sequence)
 - \(b_1 \leq b_2 \leq \ldots \leq b_n \)
- Sorting is really only useful when it can improve the efficiency of subsequent operations...

Correctness of Insertion Sort

- Use Loop Invariants
 - Initialization: \(j = 2 \) to \(n \)
 - Maintenance: if \(A[1..j-1] \) was sorted at the start of the loop, then \(A[1..j] \) will be sorted at the end
- Consider the for loop:
 - Initialization: \(j = 2 \), thus \(A[1..j] \) is in sorted order at start
 - Claim: At end of each loop, \(A[1..j] \) is in sorted order
 - Termination: At end of last loop, \(A[1..n] \) is sorted

Insertion Sorting

- Insertion-Sort(\(A[1..n] \)):
 - for \(j = 2 \) to \(n \)
 - key = \(A[j] \)
 - \(i = j - 1 \)
 - while \(i > 0 \) and \(key \leq A[i] \)
 - \(i = i - 1 \)
 - \(A[i + 1] = key \)
 - Does this algorithm sort \(A \) correctly?
- Compare this with page 17 of CLRS for notation

Runtime of Insertion Sort

- Insertion-Sort(\(A[1..n] \)):
 - for \(j = 2 \) to \(n \)
 - key = \(A[j] \)
 - \(i = j - 1 \)
 - while \(i > 0 \) and \(key \leq A[i] \)
 - \(i = i - 1 \)
 - \(A[i + 1] = key \)
 - What takes time?
 - CLRS counts each op...
 - We will count uses of \(\leq \)
 - Easy to see the outer loop happens \(n-1 \) times, but what about the inner one?
 - “Worst case” runtime analysis: how bad could it be?
 - Worst case happens if input is exactly “anti-sorted”
 - The inner loop will run from \(i = j-1 \) to 0, total of \(j \) times
 - One used per inner loop, total of \(\sum_{j=2}^{n} j = \frac{n(n+1)}{2} \) uses
 - What is the best case?
Merge Sorting 1

- Observation: It is easy to merge two pre-sorted lists
- Merge(L[1..n1], R[1..n2]):
 - n = n1 + n2; i, j = 1
 - Create array A[1..n]
 - for k = 1 to n
 - if L[i] ≤ R[j] then // Out of bounds = ∞
 - A[k] = L[i]; i = i + 1
 else
 - A[k] = R[j]; j = j + 1
 - return A // A is now a merge of L, R
- Uses exactly n = n1 + n2 comparisons

Merge Sorting 2

- Intuition: “Divide and Conquer”. Chop input into smaller, easily sorted lists... then merge them
- Merge-Sort(A[1..n]):
 - if n > 1 then
 - p = ⌈n/2⌉
 - L = Merge-Sort(A[1..p])
 - R = Merge-Sort(A[p+1..n])
 - return Merge(L, R)
 - else return A
- Correctness follows from correctness of Merge
- How can we analyze the runtime?

Runtime of Merge Sort

Merge-Sort(A[1..n]):
- if n > 1 then
 - p = ⌈n/2⌉
 - L = Merge-Sort(A[1..p])
 - R = Merge-Sort(A[p+1..n])
 - return Merge(L, R)
else return A

- Exactly n total comparison operations are performed by the call to Merge(L, R)
- How many comparisons due to the recursion?
- Write a recurrence eqn.

Solving the Recurrence: Method 1

- Know the answer... then prove it using induction
 - Helps to be a psychic. Since you probably aren’t, I will tell you the answer is: T(n) = n lg n
 - Proof:
 1) Check basis step first: T(2) = 2 lg 2 = 2
 2) Assume: T(2^i) = 2^i lg 2^i (inductive hypothesis)
 Need to show: T(2^{i+1}) = 2^{i+1} lg 2^{i+1}
 By definition: T(2^{i+1}) = T(2^i) + T(2^i) + 2^{i+1} = 2 . (2^i lg 2^i + 2^i) + 2^{i+1} = 2^{i+1}(1+lg 2^i) + 2^{i+1} = 2^{i+1} lg 2^{i+1} + 2^{i+1}
- T(n) = T(⌈n/2⌉) + T(⌈n/2⌉) + n , T(2) = 2
- Consider only n of the form 2^i for some i

Solving the Recurrence: Method 2

- Recursion Trees
 - See diagram in CLRS (I will draw this for you)
 - Much more intuitive, but somewhat error prone
 - Also easy to show that we don’t really need n of the form 2^i...

- T(n) = T(⌈n/2⌉) + T(⌈n/2⌉) + n , T(2) = 2
- Consider only n of the form 2^i for some i

Solving the Recurrence: Method 3

- Algebraic Techniques (more on these in the next class)
 - Yield exact solutions
 - Less error prone
 - Much harder for most people
 - In general, main techniques are
 - Telescoping
 - Domain Transformations
 - Range Transformations
 - Can often “cheat”, and apply the “Master Theorem”

- T(n) = T(⌈n/2⌉) + T(⌈n/2⌉) + n , T(2) = 2
- Consider only n of the form 2^i for some i
Asymptotic Behavior

- Theoretically, constant factors don’t matter much…
 - e.g. what is faster, 4n^2 + 10 or n^3 operations?
 - In practice, they often do matter though
- Primarily, we will consider the design of “scalable” algorithms that must be efficient for large inputs
 - Bio-informatics, Google, etc.
- Thus, our primary concern is the behavior of algorithms as the input size tends towards \(\infty \)
 - This means we should consider the asymptotic behavior of efficiency measures such as runtime

\[
\Omega-Notation
\]

- Asymptotic Lower Bound
 - Definition: \(f(n) = \Omega(g(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that:
 \[
 0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0
 \]
 - Intuitively, this states that \(f(n) \) eventually grows faster than some constant multiple of \(g(n) \) as \(n \) gets larger
 - Again, the “\(\leq \)” operator here is not equality!
 - Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.
 - Example: \(2n + \log n = \Omega(n) \)

\[
O-Notation
\]

- Asymptotic Upper Bound
 - Definition: \(f(n) = O(g(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that:
 \[
 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0
 \]
 - Intuitively, this states that some constant multiple of \(g(n) \) eventually grows faster than \(f(n) \) as \(n \) gets larger
 - Be careful, the “\(= \)” operator here is not equality!
 - Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.
 - Example: \(2n + \log n = O(n) \)

\[
o-Notation
\]

- Strict Asymptotic Upper Bound
 - Definition: \(f(n) = o(g(n)) \) iff for any positive constant \(c \) there exists a positive constant \(n_0 \) such that:
 \[
 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0
 \]
 - Intuitively, this states that \(any \) constant multiple of \(g(n) \) eventually grows faster than \(f(n) \) as \(n \) gets larger
 - Again, the “\(\leq \)” operator here is not equality!
 - Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.
 - Example: \(2n + \log n = o(n^2) \)

\[
\Theta-Notation
\]

- Asymptotically Tight Bound
 - Definition: \(f(n) = \Theta(g(n)) \) iff there exist positive constants \(c_1, c_2, \) and \(n_0 \) such that:
 \[
 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n \geq n_0
 \]
 - Intuitively, this states that \(f(n) \) eventually grows like a constant multiple of \(g(n) \) as \(n \) gets larger
 - Again, the “\(= \)” operator here is not equality!
 - Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.
 - Example: \(2n + \log n = \Theta(n) \)

\[
\omega-Notation
\]

- Asymptotically Lower Bound
 - Definition: \(f(n) = \omega(g(n)) \) iff for any positive constant \(c \) there exists a positive constant \(n_0 \) such that:
 \[
 0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0
 \]
 - Intuitively, this states that \(f(n) \) eventually grows faster than \(any \) constant multiple of \(g(n) \) as \(n \) gets larger
 - Again, the “\(= \)” operator here is not equality!
 - Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.
 - Example: \(2n + \log n = \omega(\log n) \)
Useful Relationships

• Transitivity: \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) implies that \(f(n) = O(h(n)) \) (similarly...)
• Reflexivity: \(f(n) = O(f(n)) \) (similarly...)
• \(f(n) = \Theta(g(n)) \) iff \(g(n) = \Theta(f(n)) \)
• \(f(n) = O(g(n)) \) iff \(g(n) = \Omega(f(n)) \)
• \(f(n) = \omega(g(n)) \) iff \(g(n) = \omega(f(n)) \)
• \(f(n) = \Theta(g(n)) \) iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)

Shahri Wafid
NYU - Fundamental Algorithms
Summer 2005