Introduction
Algorithms

• Goal: map inputs to outputs
 ▪ The mapping is usually defined by a “problem”
 ▪ No “information” is generated… data is “processed”

• Correctness is critical
 ▪ Should prove that the mapping will (almost?) always be performed correctly by your algorithm

• Efficiency is very important
 ▪ What does “efficient” mean? What is being measured?
 ▪ Running time, Space (memory), other resources…
 ▪ Tradeoff: Efficiency vs. ease of design and elegance of implementation
Example Problem: Sorting

• Input is a sequence of n items \((a_1, a_2, \ldots, a_n) \)
• The mapping we want is determined by a “comparison” operation, denoted by \(\leq \)
• Output is a sequence \((b_1, b_2, \ldots, b_n) \) such that:
 - \(\{ a_1, a_2, \ldots, a_n \} = \{ b_1, b_2, \ldots, b_n \} \)
 (i.e. output is a permutation of the input sequence)
 - \(b_1 \leq b_2 \leq \ldots \leq b_n \)
• Sorting is really only useful when it can improve the efficiency of subsequent operations…
Insertion Sorting

- Insertion-Sort(A[1..n]):

 for j = 2 to n
 key = A[j]
 i = j – 1
 while i > 0 and key ≤ A[i]
 A[i + 1] = A[i]
 i = i – 1
 A[i + 1] = key

- Does this algorithm sort A correctly?
 - Compare this with page 17 of CLRS for notation…
Correctness of Insertion Sort

Insertion-Sort(A[1..n]):
for j = 2 to n
 key = A[j]
 i = j – 1
while i > 0 and key ≤ A[i]
 A[i + 1] = A[i]
 i = i – 1
 A[i + 1] = key

• Use Loop Invariants
 ▪ Initialization
 • Like a “Base Case”
 ▪ Maintenance
 • Like “Inductive Step”
 ▪ Termination
 • True at end of loop

• Consider the for loop:

 • Initialization: j = 2, thus A[1 .. j-1] is in sorted order at start
 • Claim: At end of each loop, A[1 .. j] is in sorted order
 ▪ Maintenance: if A[1 .. j-1] was sorted at the start of the loop, then A[1 .. j-1] will be sorted at the end
 • Termination: At end of last loop, A[1..n] is sorted

Shabsi Walfish
NYU - Fundamental Algorithms
Summer 2005
Runtime of Insertion Sort

Insertion-Sort(A[1..n]):
for j = 2 to n
 key = A[j]
 i = j - 1
 while i > 0 and key ≤ A[i]
 A[i + 1] = A[i]
 i = i - 1
 A[i + 1] = key

- What takes time?
 - CLRS counts each op…
 - We will count uses of ≤
- Easy to see the outer loop happens n-1 times, but what about the inner one?

- “Worst case” runtime analysis: how bad could it be?
- Worst case happens if input is exactly “anti-sorted”
 - The inner loop will run from i = j-1 to 0, total of j times
 - One ≤ used per inner loop, total of $\sum_{j=2}^{n} j = \ldots$ uses
- What is the best case?
Merge Sorting 1

- Observation: It is easy to merge two pre-sorted lists
- Merge($L[1..n_1], R[1..n_2]$):
 - $n = n_1 + n_2$; $i, j = 1$
 - Create array $A[1..n]$
 - for $k = 1$ to n
 - if $L[i] \leq R[j]$ then // Out of bounds = ∞
 - $A[k] = L[i]; i = i+1$
 - else
 - $A[k] = R[j]; j = j+1$
 - return A // A is now a merge of L, R
- Uses exactly $n = n_1 + n_2$ comparisons
Merge Sorting 2

• Intuition: “Divide and Conquer”. Chop input into smaller, easily sorted lists... then merge them
• Merge-Sort(A[1..n]):
 if n > 1 then
 p = ⌊ n/2 ⌋
 L = Merge-Sort(A[1 .. p])
 R = Merge-Sort(A[p+1 .. n])
 return Merge(L, R)
 else return A
• Correctness follows from correctness of Merge
• How can we analyze the runtime?
Runtime of Merge Sort

Merge-Sort(A[1..n]):

if n > 1 then
 p = ⌊n/2⌋
 L = Merge-Sort(A[1..p])
 R = Merge-Sort(A[p+1..n])
 return Merge(L, R)
else return A

- Exactly n total comparison operations are performed by the call to Merge(L, R)
- How many comparisons due to the recursion?
- Write a recurrence eqn.

\[
T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n
\]
\[
T(2) = 2
\]
- To simplify, can consider only n of the form 2^i for some i
- How do we solve this?
Solving the Recurrence: Method 1

- Know the answer... then prove it using induction
 - Helps to be a psychic. Since you probably aren’t, I will tell you the answer is: \(T(n) = n \lg n \)

Proof:
1) Check basis step first: \(T(2) = 2 \lg 2 = 2 \checkmark \)
2) Assume: \(T(2^i) = 2^i \lg 2^i \) (inductive hypothesis)

Need to show: \(T(2^{i+1}) = 2^{i+1} \lg 2^{i+1} \)

By definition: \(T(2^{i+1}) = T(2^i) + T(2^i) + 2^{i+1} \)
\(= 2 \cdot (2^i \lg 2^i + 2^i) + 2^{i+1} = 2^{i+1}(1+\lg 2^i) + 2^{i+1} \)
\(= 2^{i+1} \lg 2^{i+1} + 2^{i+1} \checkmark \)

- \(T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \), \(T(2) = 2 \)
- Consider only \(n \) of the form \(2^i \) for some \(i \)
Solving the Recurrence: Method 2

• Recursion Trees
 ▪ See diagram in CLRS (I will draw this for you)
 ▪ Much more intuitive, but somewhat error prone
 ▪ Also easy to show that we don’t really need \(n \) of the form \(2^i \)…

\[
T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n, \quad T(2) = 2
\]

• Consider only \(n \) of the form \(2^i \) for some \(i \)
Solving the Recurrence: Method 3

• Algebraic Techniques (more on these in the next class)
 ▪ Yield exact solutions
 ▪ Less error prone
 ▪ Much harder for most people

• In general, main techniques are
 ▪ Telescoping
 ▪ Domain Transformations
 ▪ Range Transformations

• Can often “cheat”, and apply the “Master Theorem”

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \quad , \quad T(2) = 2 \]

• Consider only \(n \) of the form \(2^i \) for some \(i \)
Asymptotic Behavior

- Theoretically, constant factors don’t matter much...
 - e.g. what is faster, $4n^2 + 10$ or n^3 operations?
 - In practice, they often do matter though
- Primarily, we will consider the design of “scalable” algorithms that must be efficient for large inputs
 - Bio-informatics, Google, etc.
- Thus, our primary concern is the behavior of algorithms as the input size tends towards ∞
 - This means we should consider the asymptotic behavior of efficiency measures such as runtime
O–Notation

• Asymptotic Upper Bound
 ▪ Definition: \(f(n) = O(g(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that:

 \[0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \]

 ▪ Intuitively, this states that some constant multiple of \(g(n) \) eventually grows faster than \(f(n) \) as \(n \) gets larger

 ▪ Be careful, the “=“ operator here is *not* equality!

• Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.

• Example: \(2n + \log n = O(n) \)
Ω–Notation

• Asymptotic Lower Bound
 ▪ Definition: \(f(n) = \Omega(g(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that:

\[
0 \leq c \ g(n) \leq f(n) \text{ for all } n \geq n_0
\]

 ▪ Intuitively, this states that \(f(n) \) eventually grows faster than some constant multiple of \(g(n) \) as \(n \) gets larger
 ▪ Again, the “\(=\)” operator here is not equality!

• Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.

• Example: \(2n + \log n = \Omega(n) \)
Θ—Notation

• Asymptotically Tight Bound
 ▪ Definition: \(f(n) = \Theta(g(n)) \) iff there exist positive constants \(c_1, c_2, \) and \(n_0 \) such that:

 \[
 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \quad \text{for all } n \geq n_0
 \]
 ▪ Intuitively, this states that \(f(n) \) eventually grows like a constant multiple of \(g(n) \) as \(n \) gets larger
 ▪ Again, the “=“ operator here is not equality!

• Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.

• Example: \(2n + \log n = \Theta(n) \)
o–Notation

• **Strict Asymptotic Upper Bound**
 - Definition: \(f(n) = o(g(n)) \) iff for any positive constant \(c \) there exists a positive constant \(n_0 \) such that:

 \[
 0 \leq f(n) \leq c \; g(n) \text{ for all } n \geq n_0
 \]

 - Intuitively, this states that *any* constant multiple of \(g(n) \) eventually grows faster than \(f(n) \) as \(n \) gets larger.

 - Again, the “=“ operator here is *not* equality!

• Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.

• Example: \(2n + \log n = o(n^2) \)
\(\omega \)-Notation

- Asymptotic Lower Bound
 - Definition: \(f(n) = \omega(g(n)) \) iff for any positive constant \(c \) there exists a positive constant \(n_0 \) such that:

 \[
 0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0
 \]
 - Intuitively, this states that \(f(n) \) eventually grows faster than any constant multiple of \(g(n) \) as \(n \) gets larger.
 - Again, the “\(\ll \)" operator here is not equality!

- Observe that \(c \) can be arbitrary, so any constant factors in \(g(n) \) are irrelevant. Just omit them.

- Example: \(2n + \log n = \omega(\log n) \)
Useful Relationships

• Transitivity: \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) implies that \(f(n) = O(h(n)) \) (similarly...)
• Reflexivity: \(f(n) = O(f(n)) \) (similarly...)
• \(f(n) = \Theta(g(n)) \) iff \(g(n) = \Theta(f(n)) \)
• \(f(n) = O(g(n)) \) iff \(g(n) = \Omega(f(n)) \)
• \(f(n) = o(g(n)) \) iff \(g(n) = \omega(f(n)) \)
• \(f(n) = \Theta(g(n)) \) iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)