Greedy Algorithms

Greedy Technique

- Basic steps to finding efficient greedy algorithms:
 - Start by finding a dynamic programming style solution
 - Prove that at each step of the recursion, the min/max can be satisfied by a "greedy choice" (greedy substructure)
 - Show that only one recursive call needs to be made once the greedy choice is assumed. This is often natural when all the recursive calls are made by the min/max.
 - Find the recursive solution using the greedy choice
 - Convert to an iterative algorithm if possible
- More generally, taking the direct approach:
 - Show the problem is reduced to a subproblem via a greedy choice
 - Prove there is an optimal solution containing the greedy choice
 - Prove that combining the greedy choice with an optimal solution for the remaining subproblem yields an optimal solution

Examples: Activity Selection

- Given a set of activities \(S = \{ a_1, \ldots, a_n \} \), where \(a_i \) starts at time \(s_i \geq 0 \) and finishes at time \(f_i \), find a maximal subset \(A \subseteq S \) such that, for distinct activities \(a_i, a_j \in A \), either \(s_i \geq f_j \) or \(s_j \geq f_i \)
- In other words, you want to find a largest possible subset of "compatible" activities (that do not overlap)
- Convenient notations:
 - Let \(a_0 \) be an imaginary activity finishing at time 0
 - Let \(a_{n+1} \) be an imaginary activity starting at time \(\infty \)
 - \(\mathcal{S}_j = \{ a_k \in S : f_k \leq s_j \leq f_k \} \)
 - Observe that \(\mathcal{S}_{n+1} \) contains all activities

Recursive Sol’n to AS Problem (as in Dynamic Programming)

- Assume activities sorted in increasing order of \(f_i \)
 - If they are not sorted, can do it in \(O(n \log n) \) time
- Let \(c[i, j] \) be the number of activities in the maximal solution for the subset \(\mathcal{S}_j \)
 - In other words, the largest number of compatible activities starting from time \(f_i \) finishing before time \(s_j \)
- Recursively, \(c[i, j] = \)
 - \(0 \) if \(\mathcal{S}_j = \emptyset \), e.g. if \(j \geq i \)
 - \(\max_{i < k < j} \{ c[i, k] + c[k, j] + 1 \} \) otherwise
- What is the runtime of this solution?

Greedy Substructure in AS

- Let \(f_m = \min \{ f_k : a_k \in S_m \} \). That is, activity \(a_m \) has the earliest finishing time in \(\mathcal{S}_j \)
 - Claim 1: \(a_m \) is used in some maximal solution for the activities in \(\mathcal{S}_j \)
 - Proof sketch: Suppose \(a_m \) is the first activity in some maximal solution. It can safely be removed, and replaced with \(a_n \)
 - Claim 2: \(\mathcal{S}_m = \emptyset \)
 - Proof sketch: Nothing else starting after \(a_m \) finishes before \(a_m \)
- Thus, always safe to include \(a_m \), and solve the remaining problem for \(\mathcal{S}_m \) only
Greedy Sol’n to AS Problem

Recursive-AS(S_ij)
// Assumes S_ij sorted in order of increasing f_i
if S_ij = ∅
 return ∅

m = first activity in S_ij
return {a_m} ∪ Recursive-AS(S_mj)

• Want to compute Recursive-AS(S_{0,n+1}) …
 • What is the runtime? Is recursion necessary?

Greedy Sol’n to AS Problem
(Iterative Version)

Greedy-AS(S)
// Assumes S sorted in order of increasing f_i
A = {a_1}; i = 1
for m = 2 to n
 if S_m ≥ f_i // a_m is compatible with a_i
 A = A ∪ {a_m}; i = m
 return A

• What is the runtime?

Examples: Optimal Prefix Codes

• A prefix code is a prefix-free encoding of a character set
 easily represented using a tree
• Prefix-free binary encodings correspond to placing the
 characters into leaves on some binary tree
• The number of bits required to encode a string from
 character set C using a binary prefix code T is given by:
 B(T) = ∑_{c ∈ C} f(c)d(c)
 • f(c) is the number of times character c occurs in the string
 • d(c) is the depth of the leaf containing c
• An optimal binary prefix code for a string is given by a
 tree T such that the value of B(T) is minimal for that string

Huffman Codes

• A greedy solution to find the optimal prefix code:
 Huffman(C[1 .. n])
 // Each entry C[i] has an associated priority f[i]
 Q ← C // Q is a min-priority queue
 for i = 1 to n-1
 allocate a new tree node z
 left[z] = Extract-Min(Q)
 right[z] = Extract-Min(Q)
 f[z] = f[left[z]] + f[right[z]]
 Insert(Q, z)
 return Extract-Min(Q)

• See CLRS for proof of correctness (sketched in class)

Pitfalls: The Knapsack Problem

• The 0-1 knapsack problem: A thief has knapsack that holds
 at most W lbs. He can steal from a jewelry collection
 containing n items where the i-th item is worth v_i dollars
 and weighs w_i lbs. What is the most valuable way to pack
 the knapsack?
 • If the thief is greedy, and packs the most valuable items first, will
 he get away with the most valuable loot?
 • Can certainly be solved with dynamic programming

• The fractional knapsack problem: As above, but the thief
 can steal a fraction of each item (e.g. gold dust).
 • Think about dollars per lb, for each kind of item…
 • Is this easier or harder to solve than before? Why?