Greedy Algorithms
Greed

• *Locally optimal* decisions are called *greedy*
 ▪ Short sighted strategy (e.g. thinking only one move ahead in a game), usually easy to implement
 ▪ Generally efficient, but…
 ▪ May not lead to a *globally optimal* solution
 • Sometimes, close enough to globally optimal anyway

• What are some examples of greedy algorithms?
 ▪ For the MST problem: Prim’s and Kruskal’s algorithms
 ▪ For the SSSP problem: Dijkstra’s algorithm
 • Remember, Dijkstra only works for graphs with no negative edge weights… why?
Greedy Technique

• Basic steps to finding efficient greedy algorithms:
 ▪ Start by finding a dynamic programming style solution
 ▪ Prove that at each step of the recursion, the min/max can be satisfied by a “greedy choice” (*greedy substructure*)
 ▪ Show that only one recursive call needs to be made once the greedy choice is assumed. This is often natural when all the recursive calls are made by the min/max.
 ▪ Find the recursive solution using the greedy choice
 ▪ Convert to an iterative algorithm if possible

• More generally, taking the direct approach:
 ▪ Show the problem is reduced to a subproblem via a greedy choice
 ▪ Prove there is an optimal solution containing the greedy choice
 ▪ Prove that combining the greedy choice with an optimal solution for the remaining subproblem yields an optimal solution
Examples: Activity Selection

- Given a set of activities $S = \{a_1, \ldots , a_n\}$, where a_i starts at time $s_i \geq 0$ and finishes at time $f_i > s_i$, find a maximal subset $A \subseteq S$ such that, for distinct activities $a_i, a_j \in A$, either $s_i \geq f_j$ or $s_j \geq f_i$
 - In other words, you want to find a largest possible subset of “compatible” activities (that do not overlap)

- Convenient notations:
 - Let a_0 be an imaginary activity finishing at time 0
 - Let a_{n+1} be an imaginary activity starting at time ∞
 - $S_{ij} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$
 - Observe that $S_{0, n+1}$ contains all activities
Recursive Sol’n to AS Problem (as in Dynamic Programming)

- Assume activities sorted in increasing order of f_i
 - If they are not sorted, can do it in $O(n \log n)$ time
- Let $c[i, j]$ be the number of activities in the maximal solution for the subset S_{ij}
 - In other words, the largest number of compatible activities starting from time f_i finishing before time s_j
- Recursively, $c[i, j] =$
 - 0 if $S_{ij} = \emptyset$, e.g. if $j \geq i$
 - $\max_{i < k < j} \{ c[i, k] + c[k, j] + 1 \}$ otherwise
- What is the runtime of this solution?
Greedy Substructure in AS

Let \(f_m = \min \{ f_k : a_k \in S_{ij} \} \). That is, activity \(a_m \) has the earliest finishing time in \(S_{ij} \).

Claim 1: \(a_m \) is used in some maximal solution for the activities in \(S_{ij} \).

Proof sketch: Suppose \(a_k \) is the first activity in some maximal solution. It can safely be removed, and replaced with \(a_m \).

Claim 2: \(S_{im} = \emptyset \).

Proof sketch: Nothing else starting after \(a_i \) finishes before \(a_m \).

Thus, always safe to include \(a_m \), and solve the remaining problem for \(S_{mj} \) only.
Greedy Sol’n to AS Problem

Recursive-AS(S_{ij})
 // Assumes S_{ij} sorted in order of increasing f_k
 if S_{ij} = ∅
 return ∅
 m = first activity in S_{ij}
 return \{a_m\} \cup \text{Recursive-AS}(S_{mj})

• Want to compute Recursive-AS(S_{0,n+1}) …
 ▪ What is the runtime? Is recursion necessary?
Greedy Sol’n to AS Problem
(Iterative Version)

Greedy-AS(S)

// Assumes S sorted in order of increasing f_k
A = \{a_1\} ; \quad i = 1

for m = 2 to n
 if $s_m \geq f_i$ \quad // a_m is compatible with a_i
 A = A \cup \{a_m\} ; \quad i = m

return A

• What is the runtime?
Examples: Optimal Prefix Codes

- A prefix code is a prefix-free encoding of a character set (easily represented using a tree).
- Prefix-free binary encodings correspond to placing the characters into leaves on some binary tree.
- The number of bits required to encode a string from character set \(C \) using a binary prefix code \(T \) is given by:
- \(B(T) = \sum_{c \in C} f(c) d_T(c) \)
- \(f(c) \) is the number of times character \(c \) occurs in the string.
- \(d_T(c) \) is the depth of the leaf containing \(c \).
- An optimal binary prefix code for a string is given by a tree \(T \) such that the value of \(B(T) \) is minimal for that string.
Huffman Codes

- A greedy solution to find the optimal prefix code:

  ```
  Huffman( C[1 .. n] )
  // Each entry C[i] has an associated priority f[ i ]
  Q ← C // Q is a min-priority queue
  for i = 1 to n-1
    allocate a new tree node z
    left[z] = Extract-Min(Q)
    right[z] = Extract-Min(Q)
    f[ z ] = f[ left[z] ] + f[ right[z] ]
  Insert(Q, z)
  return Extract-Min(Q)
  ```

- See CLRS for proof of correctness (sketched in class)
Pitfalls: The Knapsack Problem

- The 0-1 knapsack problem: A thief has knapsack that holds at most \(W \) lbs. He can steal from a jewelry collection containing \(n \) items where the \(i \)-th item is worth \(v_i \) dollars and weighs \(w_i \) lbs. What is the most valuable way to pack the knapsack?
 - If the thief is greedy, and packs the most valuable items first, will he get away with the most valuable loot?
 - Can certainly be solved with dynamic programming

- The fractional knapsack problem: As above, but the thief can steal a fraction of each item (e.g. gold dust).
 - Think about dollars per lb, for each kind of item…
 - Is this easier or harder to solve than before? Why?