Minimum Spanning Trees

- Given a connected graph $G = (V, E)$ let $w[u, v]$ specify the “weight” of an edge $(u, v) \in E$
- A spanning tree for G is a subset $T \subseteq E$ such that the graph (V, T) is connected and acyclic
 - In other words, T is a tree containing all vertices in V
- The weight of spanning tree T is given by:
 $$W(T) = \sum_{(u, v) \in T} w[u, v]$$
- A Minimum Spanning Tree (MST) is a spanning tree of minimal weight

Growing an MST

- Start with an empty set of edges A, and repeatedly add “safe” edges, until A is a spanning tree
 - An edge (u, v) is safe to add if it maintains the invariant that the set of edges A is a subset of some MST for G
- Theorem 23.1 in CLRS:
 Let A be a subset of some MST for G, and let $(S, V-S)$ be any cut of G that respects A. If (u, v) is a light edge crossing the cut then (u, v) is safe for A.
 - Proof?
- How can we find such safe edges efficiently?

Prim’s Algorithm

MST-Prim(V, E, w, r) // r is to be the “root” of the MST
for all $v \in V$
key[v] = ∞, $\pi[v] = \text{NIL}$
key[r] = 0
Q ← V // Q is a min-priority queue (priorities in key[V])
while $Q \neq \emptyset$
 $u = \text{Extract-Min}(Q)$ // u already connected “safely”
 for all $v \in \text{Adj}[u]$
 if $v \in Q$ and $w[u, v] < \text{key}[v]$
 key[v] = $w[u, v]$, $\pi[v] = u$ // Update priority of v
return $A = \{ v, \pi[v] : v \in V - \{r\} \}$
- Runtime depends on the choice of Min-Priority-Queue
 - Can get $O(|V| \log |V|)$ using binary heaps

The Single-Source Shortest Path (SSSP) Problem

- A path p is a sequence of vertices (v_0, v_1, \ldots, v_k) such that $(v_{i-1}, v_i) \in E$ for $i = 1 \ldots k$
 - Notation: $u \rightsquigarrow v$ means a path from u to v
- The weight of a path p is $w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$
- The shortest-path weight from u to v is $\delta(u, v) = \min(w(u \rightsquigarrow v))$
- A shortest path p has weight $w(p) = \delta(u, v)$
- Single-Source Shortest Path Problem: Find the shortest paths from source vertex s to all other vertices in the graph
Properties of Shortest Paths and Path Relaxation

Relax(u,v,w) // Initialize, for all v ∈ S: d[v] = ∞, π[v] = NIL, d[S] = 0
if d[v] > d[u] + w(u,v)
d[v] = d[u] + w(u,v), π[v] = u

• Triangle Inequality: δ(s,v) ≤ δ(s,u) + w(u,v)
• Upper-bound Property: d[v] ≥ δ(s,v)
• Convergence: if s → u → v is a shortest path and d[u] = δ(s,u) invoking Relax(u,v,w) yields d[v] = δ(s,v)
• Path-Relaxation: if the edges of a shortest path from s to v are relaxed in sequence, d[v] = δ(s,v)

Bellman-Ford

Bellman-Ford(V,E,w,s)
Initialize d[] and π[]
for i = 1 to |V| - 1
 for each (u,v) ∈ E
 Relax(u,v,w)
if d[v] > d[u] + w[u,v] return FALSE
return TRUE

• Returns true for any graph with no negative-weight cycles
• Runtime is O(|V||E|)

SSSP for DAGs

DAG-Shortest-Paths(V,E,w,s)
 topologically sort V // Can only do this for a DAG
 Initialize d[] and π[]
 for each v ∈ V // In topologically sorted order...
 for all v ∈ Adj[u]
 Relax(u,v,w)
 • Correctness follows immediately from Path-Relaxation Property
 • Runtime is Θ(|V|+|E|)

Dijkstra’s Algorithm

Dijkstra(V,E,w,s) // Compare to MST-Prim...
for all v ∈ V
 d[s] = ∞, π[v] = NIL
 d[S] = 0, S ← ∅
 Q ← V // Q is a min-priority queue (priorities in d[V])
 while Q ≠ ∅
 u = Extract-Min(Q) // d[u] already minimal
 S ← S ∪ {u}
 for all v ∈ Adj[u]
 Relax(u,v,w) // Update priority of v afterwards!

• Works for graphs with no negative edge weights only
• Runtime same as MST-Prim