Dynamic Programming

What is Dynamic Programming?

- Technique for avoiding redundant work in recursive algorithms
- Works best with optimization problems that have a “nice” underlying structure
- Can often be used to transform recursive code into iterative code

Toy Example: Fibonacci

- F(n):
 if n == 1 or n == 2 then return 1
 else return F(n-1) + F(n-2)
- What is the runtime of F? For a quick lower bound, change the last line to read:
 return F(n-2) + F(n-2)
- Easy to see runtime is \(\Omega(2^n) \), exponential!

Fixing Fibonacci, Part 1

- F(n):
  ```
  static int a[MAX] // initialized to all 0
  if a[n] != 0 then return a[n]
  if n == 1 or n == 2 then a[n] = 1
  else a[n] = F(n-1) + F(n-2)
  return a[n]
  ```
- What is the new runtime of F?
 - One addition operation per array entry, so total runtime is \(O(n) \). Linear!
 - Still uses recursion. Can we do better?
 - How is the array actually filled in?

Fixing Fibonacci, Part 2

- F(n):
  ```
  int a[MAX] // Need not be initialized
  for j = 3 to n
      a[j] = a[j-1] + a[j-2]
  return a[n]
  ```
- Recursion has been eliminated and replaced with a simple loop that builds the array directly
 - Recursive calls are replaced by table lookups
 - Runtime remains \(O(n) \)

Fixing Fibonacci, Part 3

- F(n):
  ```
  int a[MAX] // Need not be initialized
  for j = 3 to n
      j1 = 1 + ( j mod 2 )
      j2 = 1 + ( j - 1 mod 2 )
      a[j] = a[j1] + a[j2]
  return a[1 + ( n mod 2 )]
  ```
- Table has been compressed to constant space
- Runtime remains \(O(n) \)
Tackling Optimization Problems

• Instead of finding the optimal solution itself, try to find only the “cost” of the optimal solution
• Find a recursive program (using a minimal number of parameters) to solve for the cost
• Apply dynamic programming, building a table to avoid excess work (as in the Fibonacci example)
• Convert to iterative code if desired
• “Memoize” the table entries in order to recover the optimal solution itself

Recursive sol’n for length of LCS

• X_1, \ldots, X_i elements of X, similarly Y_1, \ldots, Y_j
• LCSLen(X,Y):
 \[
 m = \text{len}(X); n = \text{len}(Y)
 \]
 if $m = 0$ or $n = 0$ then return 0
 else if $x_m = y_n$ then return LCSLen(X_{m-1}, Y_{n-1}) + 1
 else return max(LCSLen(X_{m-1}, Y), LCSLen(X, Y_{n-1}))

• Easy to argue correctness
• Worst case runtime is exponential (analysis is similar to Fibonacci)

A Dynamic Programming Fix

• LCSLen(X,Y):
 \[
 \text{static int c[MLEN,MAXLEN] } // \text{Initialized to all -1}
 m = \text{len}(X); n = \text{len}(Y)
 \]
 if $c[m,n] = -1$ then return $c[m,n]$
 else if $x_m = y_n$ then $c[m,n] = \text{LCSLen}(X_{m-1}, Y_{n-1}) + 1$
 else $c[m,n] = \text{max}(\text{LCSLen}(X_{m-1}, Y), \text{LCSLen}(X, Y_{n-1}))$

• Worst case runtime is now $O(mn)$
• Constant time per table entry, table will be m by n
• How is the table actually being built?

Iterative sol’n for length of LCS

• LCSLen(X,Y):
 \[
 \text{static int c[MLEN,MAXLEN] } // \text{Initialized to all 0}
 m = \text{len}(X); n = \text{len}(Y)
 \]
 for $i = 1$ to m
 for $j = 1$ to n
 if $x_i = y_j$ then $c[i,j] = c[i-1, j-1] + 1$
 else $c[i,j] = \text{max}(c[i-1,j], c[i,j-1])$
 return $c[m,n]$

• Runtime is clearly still $O(mn)$
• No recursion

Finding the LCS: Memoize

• LCSTable(X,Y):
 \[
 \text{static int b[MLEN,MAXLEN] } // \text{Initialized to all 0}
 \]
 for $i = 1$ to m
 for $j = 1$ to n
 if $x_i = y_j$ then $b[i,j] = 1$
 else if $c[i-1,j] > c[i,j-1]$ then $b[i,j] = 1$
 else if $c[i,j] > c[i-1,j-1]$ then $b[i,j] = 1$
 else $b[i,j] = 0$
 if $b[m,n] = 0$ then print “No LCS”
 else $\text{print LCS}(X,Y)$

• Need a second algorithm to recover the LCS from the table $b[i,j]$ and print it out
Printing out the LCS

- PrintLCS(X, b, i, j):
 - if i == 0 or j == 0 then return
 - if bi == 1 then
 - PrintLCS(X, b, i-1, j-1)
 - print xi
 - else if bi == 2 then PrintLCS(X, b, i-1, j)
 - else PrintLCS(X, b, i, j-1)

- Runtime is O(m + n), very efficient
- Notice that it was convenient to recover the LCS solution recursively

Matrix Multiplication

- Matrix multiplication basics:
 - Matrix multiplication is not commutative
 - An \(p \times q \) matrix can only multiply with a \(q \times r \) matrix
 - Using the standard technique, it takes \(pqr \) scalar multiplications to compute the product
 - Matrix Chain Multiplication Problem: Given a chain of \(n \) matrices \(A_1, \ldots, A_n \) such that \(A_i \) is a \(p_i \times p_{i+1} \) matrix, parenthesize the product \(A_1A_2\cdots A_n \) to minimize the number of scalar multiplications required to compute the product
 - Ex: Is it faster to compute \(A_1(A_2A_3) \) or \((A_1A_2)A_3 \)?

Naïve Solution

- Try all possible parenthesizations and compute the cost of each to find the minimum...
- How many possible parenthesizations of \(n \) matrices are there? Call this \(P(n) \). Observe \(P(1) = 1 \).
 - For \(n > 1 \), we have \(P(n) = \sum_{k=1}^{n-1} P(k)P(n-k) \)
 - Can show \(P(n) = \Omega(2^n) \)
- Not practical for large matrix chains (when it is most critical to find the best parenthesization)

Recursive sol’n for minimum cost of a matrix chain multiplication

- Let \(m[i,j] \) be the minimum cost of computing the product of the chain \(A_i \ldots A_j \) (\(i < j \))
 - Observe that if \(i = j \) then \(m[i,j] = 0 \)
 - \(m[i,j] = \min_{k<i} \{ m[i,k] + m[k+1,j] + p_i p_k p_j \} \)
 - In other words, we try parenthesizing the chain at each possible location \(k \), and find the cost of the multiplication using that parenthesization
- Directly implementing this recursive algorithm requires exponential time…

Iterative sol’n for matrix chain order

Matrix-Chain-Order(p[1..n+1])
Initialize array \(m[n,n] \) to \(\infty \)
for \(i = 1 \) to \(n \)
 for \(k = i \) to \(n \) \# L is chain length
 for \(i = 1 \) to \(n \)
 for \(j = i+L-1 \)
 \(q = m[i,k] + m[k+1,j] + p_i p_k p_j \)
 if \(q < m[i,j] \) then
 \(m[i,j] = q \) ; \(s[i,j] = k \) // Memoization
- Runtime is now \(O(n^3) \) using space \(O(n^2) \)

All Pairs Shortest Paths

- Given a graph with weighted edges, find the shortest path between every pair of nodes
 - No negative weight cycles allowed (neg. edges OK)
 - Naïve solution is to apply Single Source Shortest Path algorithm \(|V| \) times
 - Dijkstra doesn’t work with negative edge weights
 - Bellman-Ford is \(O(|V||E|) \) per source, yielding a worst case runtime of \(O(|V|^3) \)
- Can we do better using dynamic programming?
 - Not obvious at all
Floyd-Warshall: Recursive APSP

- $w[n,n]$ is edge weight matrix for n vertex graph
- Only vertices numbered k or less will be allowed to become internal vertices for shortest paths
- $FW(w, n, k)$:
 - If $k == 0$ then return $w[,]$
 - If $i == 1$ to n for $j == 1$ to n
 - $d[i,j] = FW(w, ..., k-1) + d[i,k] + d[k,j]$
 - Can prove $FW(w, n, n)$ will be sol’n to APSP cost

Removing Recursion from F-W

- $FW(w, n, k)$:
 - If $k == 0$ then return $w[,]$
 - For $i == 1$ to n for $j == 1$ to n
 - $d[i,j] = min(d[i,j], d[i,k] + d[k,j])$
 - Runtime is still $O(n^3)$, space is now $O(n^2)$
 - Now we need to “memoize” to recover the actual shortest paths

Memoized F-W

- $FWTable(w, n, k)$:
 - Initialize $b[n,n]$ to all -1
 - For $i == 1$ to n for $j == 1$ to n
 - $d[i,j] = min(d[i,j], d[i,k] + d[k,j])$
 - Can recover the actual paths from table $b[,]$

Printing out an F-W Path

- $PrintFW(b[n,n], i, j)$:
 - If $b[i, j] == 0$ then print “No path”
 - Else if $b[i, j] > 0$ then print “(i, “ "$ j” ”
 - Else
 - $PrintFW(b[,], i, j)$
 - $PrintFW(b[,], b[i, j])$
 - Return

- Notice the use of recursion in path recovery