Iterative code can often be used to transform recursive code into a "nice" underlying structure. Recursive algorithms work best with optimization problems that have a technique for avoiding redundant work in Dynamic Programming.
Toy Example: Fibonacci

- $F(n)$:

  ```
  if n == 1 or n == 2 then return 1
  else return $F(n-1) + F(n-2)$
  ```

- What is the runtime of F? For a quick lower bound, change the last line to read:

  ```
  return $F(n-2) + F(n-2)$
  ```

Easy to see runtime is $\Omega(2^n)$, exponential!
Fixing Fibonacci, Part 1

• F(n):
 \[
 \text{static int a[MAX] \quad // initialized to all 0}
 \text{if a[n] \neq 0 then return a[n]}
 \text{if n == 1 or n == 2 then a[n] = 1}
 \text{else a[n] = F(n-1) + F(n-2)}
 \text{return a[n]}
 \]

• What is the new runtime of F?
 - One addition operation per array entry, so total runtime is $O(n)$. Linear!

• Still uses recursion. Can we do better?
 - How is the array actually filled in?
Fixing Fibonacci, Part 2

• F(n):

  ```
  int a[MAX]    // Need not be initialized
  for j = 3 to n
    a[j] = a[j-1] + a[j-2]
  return a[n]
  ```

• Recursion has been eliminated and replaced with a simple loop that builds the array directly
 • Recursive calls are replaced by table lookups

• Runtime remains \(O(n) \)
Fixing Fibonacci, Part 3

• $F(n)$:

  ```
  int a[MAX]  // Need not be initialized
  for j = 3 to n
    j1 = 1 + ( j mod 2 )
    j2 = 1 + ( j -1 mod 2)
    a[ j1 ] = a[ j1 ] + a[ j2 ]
  return a[ 1+ (n mod 2) ]
  ```

• Table has been compressed to constant space
• Runtime remains $O(n)$
Tackling Optimization Problems

• Instead of finding the optimal solution itself, try to find only the “cost” of the optimal solution
• Find a recursive program (using a minimal number of parameters) to solve for the cost
• Apply dynamic programming, building a table to avoid excess work (as in the Fibonacci example)
• Convert to iterative code if desired
• “Memoize” the table entries in order to recover the optimal solution itself
The LCS Problem

- Given seqs. \(X = \{x_1, \ldots, x_m\} \) and \(Y = \{y_1, \ldots, y_n\} \), find the longest common subsequence
 - A subsequence is formed by removing zero or more elements from a sequence
 - A common subseq. is a subseq. shared by \(X \) and \(Y \)
- Example: \(X = \{A,P,P,L,E,S\} \) \(Y = \{P,E,A,R,S\} \)
 - The LCS is \(\{P,E,S\} \)
 - May not always be unique (e.g. \(Y = \{P,E,A,R,L,S\} \))
- Naïve solution: Try all possible subsequences
 - What is the runtime? (Hint: Not good!)
Recursive sol’n for length of LCS

• X_i denotes first i elements of X, similarly, Y_j ...

• LCSLen(X, Y):

 $m = \text{len}(X); n = \text{len}(Y)$

 if $m == 0$ or $n == 0$ then return 0

 else if $x_m == y_n$ then return LCSLen(X_{m-1}, Y_{n-1}) + 1

 else return max(LCSLen(X_{m-1}, Y_n), LCSLen(X_m, Y_{n-1}))

• Easy to argue correctness

• Worst case runtime is exponential (analysis is similar to Fibonacci)
A Dynamic Programming Fix

• LCSLen(X,Y):
 static int c[MAXLEN,MAXLEN] // Initialized to all -1
 m = len(X); n = len(Y)
 if c[m,n] != -1 then return c[m,n]
 if m == 0 or n == 0 then c[m,n] = 0
 else if x_m == y_n then c[m,n] = LCSLen(X_{m-1},Y_{n-1}) + 1
 else c[m,n] = max(LCSLen(X_{m-1},Y_n), LCSLen(X_m,Y_{n-1}))
 return c[m,n]

• Worst case runtime is now O(mn)
 ▪ Constant time per table entry, table will be m by n
• How is the table actually being built?
Iterative sol’n for length of LCS

• LCSLen(X,Y):
 static int c[MAXLEN,MAXLEN] // Initialized to all 0
 m = len(X); n = len(Y)
 for i = 1 to m
 for j = 1 to n
 if x_i == y_j then c[i, j] = c[i-1, j-1] + 1
 else c[i, j] = max(c[i-1, j] , c[i, j-1])
 return c[m,n]

• Runtime is clearly still O(mn)
• No recursion
Finding the LCS: Memoize

- LCSTable(X,Y):
 static int c[MAXLEN,MAXLEN] // Initialized to all 0
 static int b[MAXLEN,MAXLEN] // May be uninitialized
 m = len(X); n = len(Y)
 for i = 1 to m; for j = 1 to n
 if x_i == y_j then
 c[i, j] = c[i-1, j-1] + 1; b[i, j] = 1 // Case 1
 else if c[i-1, j] > c[i, j-1] then
 c[i, j] = c[i-1, j]; b[i, j] = 2 // Case 2
 else
 c[i, j] = c[i, j-1]; b[i, j] = 3 // Case 3

- Need a second algorithm to recover the LCS from the table b[. , .] and print it out
Printing out the LCS

- PrintLCS(X, b, i, j):
 - if i == 0 or j == 0 then return
 - if b[i, j] == 1 then
 - PrintLCS(X, b, i-1, j-1)
 - print \(x_i \)
 - else if b[i, j] == 2 then PrintLCS(X, b, i-1, j)
 - else PrintLCS(X, b, i, j-1)

- Runtime is \(O(m + n) \), very efficient
- Notice that it was convenient to recover the LCS solution recursively
Matrix Multiplication

• Matrix multiplication basics:
 ▪ Matrix multiplication is *not* commutative
 ▪ An $p \times q$ matrix can only multiply with a $q \times r$ matrix
 ▪ Using the standard technique, it takes pqr scalar multiplications to compute the product

• Matrix Chain Multiplication Problem: Given a chain of n matrices (A_1, \ldots, A_n) such that A_i is a $p_{i-1} \times p_i$ matrix, *parenthesize* the product $A_1 A_2 \cdots A_n$ to minimize the number of scalar multiplications required to compute the product
 ▪ Ex: Is it faster to compute $A_1 (A_2 A_3)$ or $(A_1 A_2) A_3$?
Naïve Solution

• Try all possible parenthesizations and compute the cost of each to find the minimum…

• How many possible parenthesizations of n matrices are there? Call this \(P(n) \). Observe \(P(1) = 1 \).
 ▪ For \(n > 1 \), we have \(P(n) = \sum_{k=1}^{n-1} P(k)P(n-k) \)
 ▪ Can show \(P(n) = \Omega(2^n) \)!

• Not practical for large matrix chains (when it is most critical to find the best parenthesization)
Recursive sol’n for minimum cost of a matrix chain multiplication

- Let $m[i,j]$ be the minimum cost of computing the product of the chain (A_i, \ldots, A_j) ($i < j$)
 - Observe that if $i = j$ then $m[i , j] = 0$
 - $m[i,j] = \min_{i \leq k < j} \{m[i,k] + m[k+1, j] + p_{i-1} p_k p_j\}$
 - In other words, we try parenthesizing the chain at each possible location k, and find the cost of the multiplication using that parenthesization

- Directly implementing this recursive algorithm requires exponential time...
Iterative sol’n for matrix chain order

Matrix-Chain-Order(p[1..n+1])
 Initialize array m[n,n] to \(\infty \)
 for i = 1 to n
 m[i, i] = 0
 for L = 2 to n // L is chain length
 for i = 1 to n – L + 1
 j = i+L-1
 for k = i to j-1
 q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j
 if q < m[i,j] then
 m[i,j] = q ; s[i,j] = k // Memoization
 • Runtime is now \(O(n^3) \) using space \(O(n^2) \)
All Pairs Shortest Paths

• Given a graph with weighted edges, find the shortest path between every pair of nodes
 ▪ No negative weight cycles allowed (neg. edges OK)
• Naïve solution is to apply Single Source Shortest Path algorithm $|V|$ times
 ▪ Dijkstra doesn’t work with negative edge weights
 ▪ Bellman-Ford is $O(|V||E|)$ per source, yielding a worst case runtime of $O(|V|^4)$
• Can we do better using dynamic programming?
 ▪ Not obvious at all
Floyd-Warshall: Recursive APSP

- \(w[n,n] \) is edge weight matrix for \(n \) vertex graph
- Only vertices numbered \(k \) or less will be allowed to become internal vertices for shortest paths
- \(\text{FW}(w[n,n], k) \):

  ```
  int c[n,n]; int d[n,n]  // May be uninitialized
  if k == 0 then return w[ . , . ]
  d[ . , . ] = \text{FW}(w[ . , . ], k-1)  // Dynamic programming?
  for i = 1 to n; for j = 1 to n
    c[ i, j ] = \min( d[ i, j ] , d[ i, k ] + d[ k, j ] )
  return c[ . , . ]
  ```
- Can prove \(\text{FW}(w[n,n], n) \) will be sol’n to APSP cost
Removing Recursion from F-W

- **FW(w[n,n]):**

  ```
  static int d[n,n,n]    // May be uninitialized
  copy w[ , , ] into d[ , , 0] // This is the “base case”
  for k = 1 to n
      for i = 1 to n; for j = 1 to n
          d[ i,j, k ] = min( d[ i,j, k-1] , d[ i,k, k-1] + d[ k,j, k-1] )
  return d[ , , , n]
  ```

- **Once again, observe how the table is filled**
 - Entries at \(k^{th} \) level depend only on \(k-1^{st} \) level
 - Careful attention to detail reveals that it is safe to overwrite previous levels during the loop, like this…
Removing Recursion from F-W

• FW(w[n,n]):
 static int d[n,n] // May be uninitialized
 copy w[. , .] into d[. , .] // This is the “base case”
 for k = 1 to n
 for i = 1 to n; for j = 1 to n
 d[i,j] = min(d[i,j] , d[i,k] + d[k,j])
 return d[. , .]

• Runtime is still O(n^3), space is now O(n^2)
• Now we need to “memoize” to recover the actual shortest paths
Memoized F-W

- FWTable(w[n,n]):
 static int d[n,n]; b[n,n] // Initialize b[n,n] to all -1
 copy w[. , .] into d[. , .] // This is the "base case"
 for i = 1 to n; for j = 1 to n; if w[i,j] < INF then b[i,j] = 0
 for k = 1 to n
 for i = 1 to n; for j = 1 to n
 if d[i , j] > d[i , k] + d[k , j] then
 d[i , j] = d[i , k] + d[k , j]; b[i , j] = k

- Can recover the actual paths from table b[. , .]
Printing out an F-W Path

• PrintFW(b[n,n], i, j):
 if b[i, j] = -1 then print “No path”
 else if b[i, j] = 0 then print (“i “,” j “)”
 else
 PrintFW(b[,], i, b[i, j])
 PrintFW(b[,], b[i, j], j)
 return

• Notice the use of recursion in path recovery