Review:
Probability and Statistics

Sam Roweis

October, 2002

Random Variables and Densities

• Random variables X represents outcomes or states of world. Instantiations of variables usually in lower case: x. We will write \(p(x) \) to mean probability(\(X = x \)).
• Sample Space: the space of all possible outcomes/states. (May be discrete or continuous or mixed.)
• Probability mass (density) function \(p(x) \geq 0 \) Assigns a non-negative number to each point in sample space. Sums (integrates) to unity: \(\sum_x p(x) = 1 \) or \(\int_x p(x)dx = 1. \) Intuitively: how often does \(x \) occur, how much do we believe in \(x \).
• Ensemble: random variable + sample space+ probability function

But you have to be careful about the context and about defining random variables and sample spaces carefully. Otherwise you can get in trouble (see, e.g. Simpson’s paradox/Prisoner’s paradox).

Probability

• We use probabilities \(p(x) \) to represent our beliefs \(B(x) \) about the states \(x \) of the world.
• There is a formal calculus for manipulating uncertainties represented by probabilities.
• Any consistent set of beliefs obeying the Cox Axioms can be mapped into probabilities.
 1. Rationally ordered degrees of belief:
 if \(B(x) > B(y) \) and \(B(y) > B(z) \) then \(B(x) > B(z) \)
 2. Belief in \(x \) and its negation \(\bar{x} \) are related: \(B(x) = f[B(\bar{x})] \)
 3. Belief in conjunction depends only on conditionals:
 \(B(x \text{ and } y) = g[B(x), B(y|x)] = g[B(y), B(x|y)] \)

Expectations, Moments

• Expectation of a function \(a(x) \) is written \(E[a] \) or \(\langle a \rangle \)

\[
E[a] = \langle a \rangle = \sum_x p(x)a(x)
\]

E.g. mean = \(\sum_x xp(x) \), variance = \(\sum_x (x - E[x])^2 p(x) \)
• Moments are expectations of higher order powers.
 (Mean is first moment. Autocorrelation is second moment.)
• Centralized moments have lower moments subtracted away (e.g. variance, skew, curtoysis).
• Deep fact: Knowledge of all orders of moments completely defines the entire distribution.
Joint Probability

- Key concept: two or more random variables may interact. Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.
- We call this a joint ensemble and write
 \[p(x, y) = \text{prob}(X = x \text{ and } Y = y) \]

Marginal Probabilities

- We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:
 \[p(x) = \sum_y p(x, y) \]
- This is like adding slices of the table together.
- Another equivalent definition: \(p(x) = \sum_y p(x | y)p(y) \).

Conditional Probability

- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.
 \[p(x | y) = \frac{p(x, y)}{p(y)} \]

Bayes’ Rule

- Manipulating the basic definition of conditional probability gives one of the most important formulas in probability theory:
 \[p(x | y) = \frac{p(y | x)p(x)}{p(y)} = \frac{p(y | x)p(x)}{\sum_{x'} p(y | x')p(x')} \]
- This gives us a way of "reversing" conditional probabilities.
- Thus, all joint probabilities can be factored by selecting an ordering for the random variables and using the "chain rule":
 \[p(x, y, z, \ldots) = p(x)p(y | x)p(z | x, y)p(\ldots | x, y, z) \]
Independence & Conditional Independence

- Two variables are independent iff their joint factors:
 \[p(x, y) = p(x)p(y) \]

- Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:
 \[p(x, y | z) = p(x | z)p(y | z) \quad \forall z \]

Entropy

- Measures the amount of ambiguity or uncertainty in a distribution:
 \[H(p) = - \sum_x p(x) \log p(x) \]

- Expected value of \(- \log p(x)\) (a function which depends on p(x)!).
- \(H(p) > 0\) unless only one possible outcome in which case \(H(p) = 0\).
- Maximal value when p is uniform.
- Tells you the expected "cost" if each event costs \(- \log p(event)\)

Cross Entropy (KL Divergence)

- An asymmetric measure of the distance between two distributions:
 \[KL[p || q] = \sum_x p(x)[\log p(x) - \log q(x)] \]

- \(KL > 0\) unless \(p = q\) then \(KL = 0\)
- Tells you the extra cost if events were generated by \(p(x)\) but instead of charging under \(p(x)\) you charged under \(q(x)\).

Jensen’s Inequality

- For any concave function \(f()\) and any distribution on \(x\),
 \[E[f(x)] \leq f(E[x]) \]

- e.g. \(\log()\) and \(\sqrt{}\) are concave
- This allows us to bound expressions like \(\log p(x) = \log \sum_z p(x, z)\)
Statistics

- Probability: inferring probabilistic quantities for data given fixed models (e.g. prob. of events, marginals, conditionals, etc).
- Statistics: inferring a model given fixed data observations (e.g. clustering, classification, regression).
- Many approaches to statistics: frequentist, Bayesian, decision theory, ...

(Conditional) Probability Tables

- For discrete (categorical) quantities, the most basic parametrization is the probability table which lists \(p(x = k^{th} \text{ value}) \).
- Since PTs must be nonnegative and sum to 1, for \(k \)-ary variables there are \(k - 1 \) free parameters.
- If a discrete variable is conditioned on the values of some other discrete variables we make one table for each possible setting of the parents: these are called conditional probability tables or CPTs.

Some (Conditional) Probability Functions

- Probability density functions \(p(x) \) (for continuous variables) or probability mass functions \(p(x = k) \) (for discrete variables) tell us how likely it is to get a particular value for a random variable (possibly conditioned on the values of some other variables.)
- We can consider various types of variables: binary/discrete (categorical), continuous, interval, and integer counts.
- For each type we'll see some basic probability models which are parametrized families of distributions.

Exponential Family

- For (continuous or discrete) random variable \(x \)
 \[
p(x|\eta) = h(x) \exp\{\eta^\top T(x) - A(\eta)\}
 = \frac{1}{Z(\eta)} h(x) \exp\{\eta^\top T(x)\}
\]
is an exponential family distribution with natural parameter \(\eta \).
- Function \(T(x) \) is a sufficient statistic.
- Function \(A(\eta) = \log Z(\eta) \) is the log normalizer.
- Key idea: all you need to know about the data is captured in the summarizing function \(T(x) \).
Bernoulli

- For a binary random variable with \(p(\text{heads}) = \pi \):

 \[
 p(x | \pi) = \pi^x (1 - \pi)^{1-x} = \exp \left\{ \log \left(\frac{\pi}{1 - \pi} \right) x + \log(1 - \pi) \right\}
 \]

- Exponential family with:

 \[
 \eta = \log \frac{\pi}{1 - \pi} \\
 T(x) = x \\
 A(\eta) = -\log(1 - \pi) = \log(1 + e^{\eta}) \\
 h(x) = 1
 \]

- The logistic function relates the natural parameter and the chance of heads

 \[
 \pi = \frac{1}{1 + e^{-\eta}}
 \]

Poisson

- For an integer count variable with rate \(\lambda \):

 \[
 p(x | \lambda) = \frac{\lambda^x e^{-\lambda}}{x!} = \frac{1}{x!} \exp \{ x \log \lambda - \lambda \}
 \]

- Exponential family with:

 \[
 \eta = \log \lambda \\
 T(x) = x \\
 A(\eta) = \lambda = e^\eta \\
 h(x) = \frac{1}{x!}
 \]

- e.g. number of photons \(x \) that arrive at a pixel during a fixed interval given mean intensity \(\lambda \)
- Other count densities: binomial, exponential.

Multinomial

- For a set of integer counts on \(k \) trials

 \[
 p(x | \pi) = \frac{k!}{x_1! x_2! \cdots x_n!} \pi_1^{x_1} \pi_2^{x_2} \cdots \pi_n^{x_n} = h(x) \exp \left\{ \sum_i x_i \log \pi_i \right\}
 \]

- But the parameters are constrained: \(\sum_i \pi_i = 1 \).

 So we define the last one \(\pi_n = 1 - \sum_{i=1}^{n-1} \pi_i \).

 \[
 p(x | \pi) = h(x) \exp \left\{ \sum_{i=1}^{n-1} \log \left(\frac{\pi_i}{\pi_n} \right) x_i + k \log \pi_n \right\}
 \]

- Exponential family with:

 \[
 \eta_i = \log \pi_i - \log \pi_n \\
 T(x_i) = x_i \\
 A(\eta) = -k \log \pi_n = k \log \sum_i e^{\eta_i} \\
 h(x) = \frac{k!}{x_1! x_2! \cdots x_n!}
 \]

 The softmax function relates the basic and natural parameters:

 \[
 \pi_i = \frac{e^{\eta_i}}{\sum_j e^{\eta_j}}
 \]

Gaussian (Normal)

- For a continuous univariate random variable:

 \[
 p(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} = \frac{1}{\sqrt{2\pi}\sigma} \exp \left\{ \frac{\mu x}{\sigma^2} - \frac{x^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} - \log \sigma \right\}
 \]

- Exponential family with:

 \[
 \eta = [\mu/\sigma^2; -1/2\sigma^2] \\
 T(x) = [x; x^2] \\
 A(\eta) = \log \sigma + \mu/2\sigma^2 \\
 h(x) = 1/\sqrt{2\pi}
 \]

- Note: a univariate Gaussian is a two-parameter distribution with a two-component vector of sufficient statistics.
Multivariate Gaussian Distribution

- For a continuous vector random variable:
 \[
p(x|\mu, \Sigma) = |2\pi\Sigma|^{-1/2} \exp \left\{ -\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right\}
 \]

- Exponential family with:
 \[
 \eta = [\Sigma^{-1} \mu ; -1/2 \Sigma^{-1}]
 \]
 \[
 T(x) = [x ; xx^\top]
 \]
 \[
 A(\eta) = \log |\Sigma|/2 + \mu^\top \Sigma^{-1} \mu/2
 \]
 \[
 h(x) = (2\pi)^{-n/2}
 \]

- Sufficient statistics: mean vector and correlation matrix.
- Other densities: Student-t, Laplacian.
- For non-negative values use exponential, Gamma, log-normal.

Gaussian Marginals/Conditionals

- To find these parameters is mostly linear algebra:
 Let \(z = [x^\top y^\top]^\top \) be normally distributed according to:
 \[
 z = \begin{bmatrix} x \\ y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} a \\ b \end{bmatrix}; \begin{bmatrix} A & C \\ C^\top & B \end{bmatrix} \right)
 \]
 where \(C \) is the (non-symmetric) cross-covariance matrix between \(x \) and \(y \) which has as many rows as the size of \(x \) and as many columns as the size of \(y \).
 The marginal distributions are:
 \[
 x \sim \mathcal{N}(a; A)
 \]
 \[
 y \sim \mathcal{N}(b; B)
 \]
 and the conditional distributions are:
 \[
 x|y \sim \mathcal{N}(a + CB^{-1}(y - b); A - CB^{-1}C^\top)
 \]
 \[
 y|x \sim \mathcal{N}(b + C^\top A^{-1}(x - a); B - C^\top A^{-1}C)
 \]

Important Gaussian Facts

- All marginals of a Gaussian are again Gaussian.
- Any conditional of a Gaussian is again Gaussian.

Moments

- For continuous variables, moment calculations are important.
- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer \(A(\eta) \).
- The \(q^{th} \) derivative gives the \(q^{th} \) centred moment.
 \[
 \frac{dA(\eta)}{d\eta} = \text{mean}
 \]
 \[
 \frac{d^2A(\eta)}{d\eta^2} = \text{variance}
 \]
 \[
 \ldots
 \]
- When the sufficient statistic is a vector, partial derivatives need to be considered.
Linear-Gaussian Conditionals

- When the variable(s) being conditioned on (parents) are discrete, we just have one density for each possible setting of the parents. e.g. a table of natural parameters in exponential models or a table of tables for discrete models.
- When the conditioned variable is continuous, its value sets some of the parameters for the other variables.
- A very common instance of this for regression is the “linear-Gaussian”:
 \[p(y|x) = \text{gauss}(\theta^\top x; \Sigma). \]
- For discrete children and continuous parents, we often use a Bernoulli/multinomial whose parameters are some function \(f(\theta^\top x) \).

Likelihood Function

- So far we have focused on the (log) probability function \(p(x|\theta) \) which assigns a probability (density) to any joint configuration of variables \(x \) given fixed parameters \(\theta \).
- But in learning we turn this on its head: we have some fixed data and we want to find parameters.
- Think of \(p(x|\theta) \) as a function of \(\theta \) for fixed \(x \):
 \[
 L(\theta; x) = p(x|\theta) \\
 \ell(\theta; x) = \log p(x|\theta)
 \]
 This function is called the (log) “likelihood”.
- Chose \(\theta \) to maximize some cost function \(c(\theta) \) which includes \(\ell(\theta) \):
 \[
 c(\theta) = \ell(\theta; \mathcal{D}) \quad \text{maximum likelihood (ML)} \\
 c(\theta) = \ell(\theta; \mathcal{D}) + r(\theta) \quad \text{maximum a posteriori (MAP)/penalizedML}
 \]
 (also cross-validation, Bayesian estimators, BIC, AIC, ...)

Multiple Observations, Complete Data, IID Sampling

- A single observation of the data \(x \) is rarely useful on its own.
- Generally we have data including many observations, which creates a set of random variables: \(\mathcal{D} = \{x^1, x^2, \ldots, x^M\} \)
- Two very common assumptions:
 1. Observations are independently and identically distributed (IID) according to joint distribution of graphical model: IID samples.
 2. We observe all random variables in the domain on each observation: complete data.

Maximum Likelihood

- For IID data:
 \[
 p(\mathcal{D}|\theta) = \prod_m p(x^m|\theta) \\
 \ell(\theta; \mathcal{D}) = \sum_m \log p(x^m|\theta)
 \]
- Idea of maximum likelihood estimation (MLE): pick the setting of parameters most likely to have generated the data we saw:
 \[
 \theta_{\text{ML}}^* = \text{argmax}_\theta \ell(\theta; \mathcal{D})
 \]
- Very commonly used in statistics. Often leads to “intuitive”, “appealing”, or “natural” estimators.
Example: Bernoulli Trials

- We observe M iid coin flips: $D = H, H, T, H, \ldots$
- Model: $p(H) = \theta \quad p(T) = (1 - \theta)$
- Likelihood:
 \[
 \ell(\theta; D) = \log p(D|\theta) = \log \prod_m \theta^{x_m} (1 - \theta)^{1-x_m}
 = \log \theta \sum_m x_m + \log(1 - \theta) \sum_m (1 - x_m)
 = \log \theta N_H + \log(1 - \theta) N_T
 \]
- Take derivatives and set to zero:
 \[
 \frac{\partial \ell}{\partial \theta} = N_H \theta - N_T (1 - \theta)
 \Rightarrow \theta_{\text{ML}}^* = \frac{N_H}{N_H + N_T}
 \]

Example: Multinomial

- We observe M iid die rolls (K-sided): $D = 3, 1, K, 2, \ldots$
- Model: $p(k) = \theta_k \quad \sum_k \theta_k = 1$
- Likelihood (for binary indicators $[x^m = k]$):
 \[
 \ell(\theta; D) = \log p(D|\theta) = \log \prod_m \theta_{x^m} = \log \prod_m \theta_{[x^m=1]} \ldots \theta_{[x^m=k]}
 = \sum_k \log \theta_k \sum_m [x^m = k] = \sum_k N_k \log \theta_k
 \]
- Take derivatives and set to zero (enforcing $\sum_k \theta_k = 1$):
 \[
 \frac{\partial \ell}{\partial \theta_k} = \frac{N_k}{\theta_k} - M
 \Rightarrow \theta_{k,\text{ML}}^* = \frac{N_k}{M}
 \]

Example: Univariate Normal

- We observe M iid real samples: $D = 1.18, -0.25, 0.78, \ldots$
- Model: $p(x) = (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{(x - \mu)^2}{2\sigma^2}\right\}$
- Likelihood (using probability density):
 \[
 \ell(\theta; D) = \log p(D|\theta) = -\frac{M}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_m \frac{(x^m - \mu)^2}{\sigma^2}
 \]
- Take derivatives and set to zero:
 \[
 \frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_m (x^m - \mu)
 \frac{\partial \ell}{\partial \sigma^2} = -M/2\sigma^2 + \frac{1}{2\sigma^4} \sum_m (x^m - \mu)^2
 \Rightarrow \mu_{\text{ML}} = (1/M) \sum_m x^m
 \sigma_{\text{ML}}^2 = (1/M) \sum_m x^m - \mu_{\text{ML}}^2
 \]
Example: Linear Regression

- In linear regression, some inputs (covariates, parents) and all outputs (responses, children) are continuous valued variables.
- For each child and setting of discrete parents we use the model:
 \[p(y|x, \theta) = \text{gauss}(y|\theta^\top x, \sigma^2) \]
- The likelihood is the familiar “squared error” cost:
 \[
 \ell(\theta; D) = -\frac{1}{2\sigma^2} \sum_m (y^m - \theta^\top x^m)^2
 \]
- The ML parameters can be solved for using linear least-squares:
 \[
 \frac{\partial \ell}{\partial \theta} = -\sum_m (y^m - \theta^\top x^m)x^m
 \Rightarrow \theta^*_{\text{ML}} = (X^\top X)^{-1}X^\top Y
 \]

Sufficient Statistics

- A statistic is a function of a random variable.
- \(T(X) \) is a “sufficient statistic” for \(X \) if
 \[
 T(x^1) = T(x^2) \Rightarrow L(\theta; x^1) = L(\theta; x^2) \quad \forall \theta
 \]
- Equivalently (by the Neyman factorization theorem) we can write:
 \[
 p(x|\theta) = h(x, T(x))g(T(x), \theta)
 \]
- Example: exponential family models:
 \[
 p(x|\theta) = h(x) \exp\{\eta^\top T(x) - A(\eta)\}
 \]

Example: Linear Regression

Sufficient Statistics are Sums

- In the examples above, the sufficient statistics were merely sums (counts) of the data:
 - Bernoulli: # of heads, tails
 - Multinomial: # of each type
 - Gaussian: mean, mean-square
 - Regression: correlations
- As we will see, this is true for all exponential family models: sufficient statistics are average natural parameters.
- Only exponential family models have simple sufficient statistics. (There are some degenerate exceptions, e.g. the uniform has sufficient statistics of max/min.)
MLE for Exponential Family Models

- Recall the probability function for exponential models:
 \[p(x|\theta) = h(x) \exp\{\eta^\top T(x) - A(\eta)\} \]
- For iid data, sufficient statistic is \(\sum_m T(x^m) \):
 \[\ell(\eta; D) = \log p(D|\eta) = \left(\sum_m \log h(x^m) \right) - MA(\eta) + \left(\eta^\top \sum_m T(x^m) \right) \]
- Take derivatives and set to zero:
 \[\frac{\partial \ell}{\partial \eta} = \sum_m T(x^m) - M \frac{\partial A(\eta)}{\partial \eta} \]

 \[\Rightarrow \frac{\partial A(\eta)}{\partial \eta} = \frac{1}{M} \sum_m T(x^m) \]

 \[\eta_{ML} = \frac{1}{M} \sum_m T(x^m) \]

recalling that the natural moments of an exponential distribution are the derivatives of the log normalizer.

Fundamental Operations with Distributions

- Generate data: draw samples from the distribution. This often involves generating a uniformly distributed variable in the range [0,1] and transforming it. For more complex distributions it may involve an iterative procedure that takes a long time to produce a single sample (e.g. Gibbs sampling, MCMC).
- Compute log probabilities.
 When all variables are either observed or marginalized the result is a single number which is the log prob of the configuration.
- Inference: Compute expectations of some variables given others which are observed or marginalized.
- Learning:
 Set the parameters of the density functions given some (partially) observed data to maximize likelihood or penalized likelihood.

Basic Statistical Problems

- Let’s remind ourselves of the basic problems we discussed on the first day: density estimation, clustering classification and regression.
- Density estimation is hardest. If we can do joint density estimation then we can always condition to get what we want:
 Regression: \[p(y|x) = p(y, x)/p(x) \]
 Classification: \[p(c|x) = p(c, x)/p(x) \]
 Clustering: \[p(c|x) = p(c, x)/p(x) \] c unobserved

Learning with Known Model Structure

- In AI the bottleneck is often knowledge acquisition.
- Human experts are rare, expensive, unreliable, slow.
- But we have lots of data.
- Want to build systems automatically based on data and a small amount of prior information (from experts).
- Many systems we build will be essentially probability models.
- Assume the prior information we have specifies type & structure of the model, as well as the form of the (conditional) distributions or potentials.
- In this case learning \(\equiv \) setting parameters.
- Also possible to do “structure learning” to learn model.