Lecture 17: Inference for Profile HMMs

March 15, 2006

Reminder: HMM Graphical Model

- Hidden states \(\{ x_t \} \), outputs \(\{ y_t \} \)
- Joint probability factorizes:
 \[
 P(\{ x \}, \{ y \}) = \prod_{t=1}^{T} P(x_t|x_{t-1})P(y_t|x_t) \\
 = \pi_{x_1} \prod_{t=1}^{T-1} S_{x_t,x_{t+1}} \prod_{t=1}^{T} A_{x_t}(y_t)

 \]

- We saw efficient recursions for computing
 \[
 L = P(\{ y \}) = \sum_{\{ x \}} P(\{ x \}, \{ y \}) \text{ and } \gamma_i(t) = P(x_t = i|\{ y \}).

Forward-Backward (\(\alpha \beta \)) Inference Recursions

- Estimate the marginal over a single hidden state:
 \[
 \gamma(x_t) = p(x_t|\{ y \}) = \frac{\alpha(x_t)\beta(x_t)}{p(y_1^T)}

 \text{where} \quad \alpha_j(t) = p(y_1^t, x_t = j) \\
 \beta_j(t) = p(y_{t+1}^T | x_t = j) \\
 \gamma_i(t) = p(x_t = i | y_1^T)

- There are simple recursions for \(\alpha_j(t) \) and \(\beta_j(t) \):
 \[
 \alpha_k(t+1) = \sum_j \alpha_j(t) S_{jk} A_k(y_{t+1}); \quad \alpha_j(1) = \pi_j A_j(y_1) \\
 \beta_j(t) = \sum_i S_{ji} \beta_i(t+1) A_i(y_{t+1}); \quad \beta_j(T) = 1

- \(\alpha_i(t) \) gives total inflow of prob. to node \((t, i) \)
 - \(\beta_i(t) \) gives total outflow of prob.

Viterbi Decoding

- The numbers \(\gamma_j(t) \) above gave the probability distribution over all states at any time.
- By choosing the state \(\gamma_*(t) \) with the largest probability at each time, we can make a “best” state path. This is the path with the maximum expected number of correct states.
- But it is not the single path with the highest likelihood of generating the data. In fact it may be a path of prob. zero!
- To find the single best path, we do Viterbi decoding which is just Bellman’s dynamic programming algorithm applied to this problem.
- The recursions look the same, except with \(\max \) instead of \(\sum \).
- Bugs once more: same trick except at each step kill all bugs but the one with the highest value at the node.
A "profile HMM" or "string-edit" HMM is used for probabilistically matching an observed input string to a stored template pattern with possible insertions and deletions.

Three kinds of states: match, insert, delete.

- \(m_n \) – use position \(n \) in the template to match an observed symbol
- \(i_n \) – insert extra symbol(s) observations after template position \(n \)
- \(d_n \) – delete (skip) template position \(n \)

Forward-Backward for Profile HMMs

- The equations for the delete states in profile HMMs need to be modified slightly, since they don’t emit any symbols.
- For delete states \(k \), the forward equations become:
 \[
 \alpha_k(t) = \sum_j \alpha_j(t) S_{jk}
 \]
 which should be evaluated after the insert and match state updates.
- For all states, the backward equations become:
 \[
 \beta_k(t) = \sum_{i \in \text{match, ins}} S_{ki} \beta_i(t+1) A_i(y_{t+1}) + \sum_{j \in \text{del}} S_{kj} \beta_j(t)
 \]
 which should be evaluated first for delete states \(k \); then for the rest.

- The gamma equations remain the same:
 \[
 \gamma_i(t) = p(x_t = i \mid y_T^t) = \alpha_i(t) \beta_i(t) / L
 \]
- Notice that each summation above contains only three terms, regardless of the total number of states!

Initializing Forward-Backward for Profile HMMs

- The initialization equations for Profile HMMs also need to be fixed up, to reflect the fact that the model can only begin in states \(m_1, i_1, d_1 \) and can only finish in states \(m_N, i_N, d_N \).
 - In particular, \(\pi_j = 0 \) if \(j \) is not one of \(m_1, i_1, d_1 \).
 - When initializing \(\alpha_k(1) \), delete states \(k \) have zeros, and all other states have the product of the transition probabilities through only delete states up to them, plus the final emission probability.
 - When initializing \(\beta_k(T) \), similar adjustments must be made.
 - To enforce the condition that the model finishes in states \(m_N, i_N, d_N \), we create a special END state, accessible only from \(m_N, i_N, d_N \), and append a special "END" symbol in the final position of each sequence. We then define \(A(END, k) \) to be zero unless \(k \) is the END state, in which case \(A(END, k) \) is one. \([A(z, END) \) is also zero for any \(z \) other than the END symbol.]
M-step for Profile HMMs

• The emission probabilities $A_{ij}(t)$ for match and insert states and the initial state distribution π (for m_1, i_1, d_1) are updated exactly as in the regular M-step.

• The expected #transitions from state i to j which begin at time t are different when j is a delete state:

$$\xi_{ij}(t) = \alpha_i(t)S_{ij}\beta_j(t)/L$$

• Given this change, the updates to the transition parameters is the same as in the normal M-step.

Symbol HMM Example

• Character sequences (discrete outputs)

Mixture HMM Example

• Geyser data (continuous outputs)

State output functions

Some HMM History

• Markov (‘13) and later Shannon (‘48,’51) studied Markov chains.

• Baum et. al (BP’66, BE’67, BS’68, BPSW’70, B’72) developed much of the theory of “probabilistic functions of Markov chains”.

• Viterbi (‘67) (now Qualcomm) came up with an efficient optimal decoder for state inference.

• Applications to speech were pioneered independently by:
 – Baker (‘75) at CMU (now Dragon)
 – Jelinek’s group (‘75) at IBM (now Hopkins)
 – communications research division of IDA (Ferguson ’74 unpublished)

• Dempster, Laird & Rubin (‘77) recognized a general form of the Baum-Welch algorithm and called it the EM algorithm.

• A landmark open symposium in Princeton (‘80) hosted by IDA reviewed work till then.