Lecture 4: Probability Models

Sam Roweis
January 14, 2004

What’s Inside the Nodes/Cliques?

- We’ve focused a lot on the structure of the graphs in directed and undirected models. Today we’ll look at specific functions that can live inside the nodes (directed) or on the cliques (undirected).
- For directed models we need prior functions \(p(x_i) \) for root nodes and parent-conditionals \(p(x_i | x_{\pi_i}) \) for interior nodes.
- For undirected models we need clique potentials \(\psi_C(x_C) \) on the maximal cliques (or log potentials/energies \(H_C(x_C) \)).
- We’ll consider various types of nodes: binary/discrete (categorical), continuous, interval, and integer counts.
- We’ll see some basic probability models (parametrized families of distributions); these models live inside nodes of directed models.
- We’ll also see a variety of potential/energy functions which take multiple node values as arguments and return a scalar compatibility; these live on the cliques of undirected models.

Probability Tables & CPTs

- For discrete (categorical) variables, the most basic parametrization is the probability table which lists \(p(x = k^{th} \text{ value}) \).
- Since PTs must be nonnegative and sum to 1, for \(k \)-ary nodes there are \(k - 1 \) free parameters.
- If a discrete node has discrete parent(s) we make one table for each setting of the parents: this is a conditional probability table or CPT.

Exponential Family

- For a numeric random variable \(x \)
 \[
p(x | \eta) = h(x) \exp \{ \eta^\top T(x) - A(\eta) \} = \frac{1}{Z(\eta)} h(x) \exp \{ \eta^\top T(x) \}
\]
 is an exponential family distribution with natural parameter \(\eta \).
- Function \(T(x) \) is a sufficient statistic.
- Function \(A(\eta) = \log Z(\eta) \) is the log normalizer.
- Key idea: all you need to know about the data in order to estimate parameters is captured in the summarizing function \(T(x) \).
- Examples: Bernoulli, binomial/geometric/negative-binomial, Poisson, gamma, multinomial, Gaussian, ...
Bernoulli Distribution

- For a binary random variable $x = \{0, 1\}$ with $p(x = 1) = \pi$:
\[
p(x|\pi) = \pi^x (1 - \pi)^{1-x} = \exp \left\{ \log \left(\frac{\pi}{1 - \pi} \right) x + \log(1 - \pi) \right\}
\]

- Exponential family with:
\[
\eta = \log \frac{\pi}{1 - \pi} \\
T(x) = x \\
A(\eta) = -\log(1 - \pi) = \log(1 + e^\eta) \\
h(x) = 1
\]

- The logistic function links natural parameter and chance of heads
\[
\pi = \frac{1}{1 + e^{-\eta}} = \text{logistic}(\eta)
\]

Poisson

- For an integer count variable with rate λ:
\[
p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!} = \frac{1}{x!} \exp \{x \log \lambda - \lambda\}
\]

- Exponential family with:
\[
\eta = \log \lambda \\
T(x) = x \\
A(\eta) = \lambda = e^\eta \\
h(x) = \frac{1}{x!}
\]

- E.g. number of photons x that arrive at a pixel during a fixed interval given mean intensity λ
- Other count densities: (neg)binomial, geometric.

Multinomial

- For a categorical (discrete), random variable taking on K possible values, let π_k be the probability of the k^{th} value. We can use a binary vector $x = (x_1, x_2, \ldots, x_K)$ in which $x_k = 1$ if and only if the variable takes on its k^{th} value. Now we can write,
\[
p(x|\pi) = \pi_1^{x_1} \pi_2^{x_2} \cdots \pi_K^{x_K} = \exp \left\{ \sum_i x_i \log \pi_i \right\}
\]

Exactly like a probability table, but written using binary vectors.

- If we observe this variable several times $X = \{x^1, x^2, \ldots, x^N\}$, the (iid) probability depends on the total observed counts of each value:
\[
p(X|\pi) = \prod_n p(x^n|\pi) = \exp \left\{ \sum_i \left(\sum_n x_i^n \right) \log \pi_i \right\} = \exp \left\{ \sum_i c_i \log \pi_i \right\}
\]

Multinomial as Exponential Family

- The multinomial parameters are constrained: $\sum_i \pi_i = 1$.
Define (the last) one in terms of the rest: $\pi_K = 1 - \sum_{i=1}^{K-1} \pi_i$
\[
p(x|\pi) = \exp \left\{ \sum_{i=1}^{K-1} \log \left(\frac{\pi_i}{\pi_K} \right) x_i + k \log \pi_K \right\}
\]

- Exponential family with:
\[
\eta_i = \log \pi_i - \log \pi_K \\
T(x_i) = x_i \\
A(\eta) = -k \log \pi_K = k \log \sum_i e^{\eta_i} \\
h(x) = 1
\]

- The softmax function relates direct and natural parameters:
\[
\pi_i = \frac{e^{\eta_i}}{\sum_j e^{\eta_j}}
\]
Gaussian (normal)

- For a continuous univariate random variable:
 \[p(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} \]
 \[= \frac{1}{\sqrt{2\pi}} \exp \left\{ \frac{\mu x}{\sigma^2} - \frac{x^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} - \log \sigma \right\} \]

- Exponential family with:
 \[\eta = [\mu/\sigma^2 ; -1/2\sigma^2] \]
 \[T(x) = [x ; x^2] \]
 \[A(\eta) = \log \sigma + \mu^2/2\sigma^2 \]
 \[h(x) = 1/\sqrt{2\pi} \]

- Note: a univariate Gaussian is a two-parameter distribution with a two-component vector of sufficient statistics. (also maxent)

Multivariate Gaussian Distribution

- For a continuous vector random variable:
 \[p(x | \mu, \Sigma) = |2\pi \Sigma|^{-1/2} \exp \left\{ -\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right\} \]

- Exponential family with:
 \[\eta = [\Sigma^{-1}\mu ; -1/2\Sigma^{-1}] \]
 \[T(x) = [x ; xx^\top] \]
 \[A(\eta) = \log |\Sigma|/2 + \mu^\top \Sigma^{-1} \mu/2 \]
 \[h(x) = (2\pi)^{-n/2} \]

- Note: a d-dimensional Gaussian is a d+d^2-parameter distribution with a d+d^2-component vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained)

Gaussians

- The Gaussian is the most important continuous distribution.

- You should know how to manipulate these, and condition on subsets of variables given others. Mostly linear algebra.

- Other continuous densities: Student-t, Laplacian.

- Nonnegative densities: exponential, Gamma, log-normal.

Moments

- For numeric nodes, moment calculations are important.

- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer \(A(\eta) \).

- The \(q^{th} \) derivative gives the \(q^{th} \) centred moment.

\[\frac{dA(\eta)}{d\eta} = \text{mean} \]
\[\frac{d^2A(\eta)}{d\eta^2} = \text{variance} \]
\[\ldots \]

- When the sufficient statistic is a vector, partial derivatives need to be considered.
Nodes with Parents

- When the parent is discrete, we just have one probability model for each setting of the parent. Examples:
 - table of natural parameters (exponential model for cts. child)
 - table of tables (CPT model for discrete child)
- When the parent is numeric, some or all of the parameters for the child node become functions of the parent’s value.
 - A very common instance of this for regression is the linear-Gaussian:
 \[p(y | x) = \text{gauss}(\theta^T x; \Sigma) \].
- For classification, often use Bernoulli/Multinomial densities whose parameters \(\pi \) are some function of the parent: \(\pi_j = f_j(x) \).

Potential Functions

- We are much less constrained with potential functions, since they can be any positive function of the values of the clique nodes.
- Recall \(\psi_C(x_C) = \exp\{ -H_C(x_C) \} \).
- A common (redundant) choice for cliques which are pairs is:
 \[H(x) = \sum_i a_i x_i + \sum_{pairs \ ij} w_{ij} x_i x_j \]

GLMs and Canonical Links

- Generalized Linear Models: \(p(y | x) \) is exponential family with conditional mean \(\mu_i = f_i(\theta^T x) \).
- The function \(f \) is called the response function.
- If we chose \(f \) to be the inverse of the mapping b/w conditional mean and natural parameters then it is called the canonical response function or canonical link:
 \[\eta = \psi(\mu) \]
 \[f(\cdot) = \psi^{-1}(\cdot) \]
- Example: logistic function is canonical link for Bernoulli variables; softmax function is canonical link for multinomials

Basic Statistical Problems

- Let’s remind ourselves of the basic problems we discussed on the first day: density estimation, clustering classification and regression.
- Can always do joint density estimation and then condition:
 - Regression: \(p(y | x) = \frac{p(y, x)}{p(x)} = \frac{p(y, x)}{\int p(y, x) dy} \)
 - Classification: \(p(c | x) = \frac{p(c, x)}{p(x)} = \frac{p(c, x)}{\sum_c p(c, x)} \)
 - Clustering: \(p(c | x) = \frac{p(c, x)}{p(x)} \) c unobserved
 - Density Estimation: \(p(y | x) = \frac{p(y, x)}{p(x)} \) x unobserved

In general, if certain nodes are always observed we may not want to model their density: If certain nodes are always unobserved they are called hidden or latent variables (more later):

Regression/Classification

Clustering/Density Est.
Fundamental Operations

- What can we do with a probabilistic graphical model?
 - *Generate data.*
 For this you need to know how to sample from local models (directed) or how to do Gibbs or other sampling (undirected).
 - *Compute log probabilities.*
 When all nodes are either observed or marginalized the result is a single number which is the log prob of the configuration.
 - *Inference.*
 Compute expectations of some nodes given others which are observed or marginalized.
 - *Learning.*
 Set the parameters of the local functions given some (partially) observed data to maximize the probability of seeing that data.