Consider a BSC with error probability \(f < 1/2 \). This channel has capacity \(C = 1 - H_2(f) \).

For any desired closeness to capacity, \(\eta > 0 \), and for any desired limit on error probability, \(\epsilon > 0 \), there is a code of some length \(N \) whose rate, \(R \), is at least \(C - \eta \), and for which the probability that nearest neighbor decoding will decode a codeword incorrectly is less than \(\epsilon \).

Last class we started to give a proof of this, which more-or-less follows the proof for general channels in Chapter 10 of MacKay's book.

The idea is based on showing that a randomly chosen code performs quite well and hence that there must be specific codes which also perform quite well.

Strategy for Proving the Theorem

- Rather than showing how to construct a specific code for given values of \(f, \eta, \) and \(\epsilon \), we will consider choosing a code of a suitable length, \(N \), and rate \(\log_2(M)/N \), by picking \(M \) codewords at random from \(\mathbb{Z}_2^N \).

- We consider the following scenario:
 1. We randomly pick a code, \(C \), which we give to both the sender and the receiver.
 2. The sender randomly picks a codeword \(x \in C \), and transmits it through the channel.
 3. The channel randomly generates an error pattern, \(n \), and delivers \(y = x + n \) to the receiver.
 4. The receiver decodes \(y \) to a codeword, \(x^* \), that is nearest to \(y \) in Hamming distance.

- If the probability that this process leads to \(x^* \neq x \) is \(< \epsilon \), then there must be some specific code with error probability \(< \epsilon \).

Rearranging the Order of Choices

- It will be convenient to rearrange the order in which random choices are made, as follows:
 1. We randomly pick one codeword, \(x \), which is the one the sender transmits.
 2. The channel randomly generates an error pattern, \(n \), that is added to \(x \) to give the received data, \(y \). Let the number of transmission errors (ie, ones in \(n \)) be \(w \).
 3. We now randomly pick the other \(M-1 \) codewords. If the Hamming distance from \(y \) of all these codewords is greater than \(w \), nearest-neighbor decoding will make the correct choice.

- The probability of the decoder making the wrong choice here is the same as before.
• The probability that the codeword nearest to y is the correct decoding will be at least as great as the probability that the following sub-optimal decoder decodes correctly:

 If there is exactly one codeword x^* for which $n = y - x^*$ has a typical number of ones, then decode to x^*, otherwise declare that decoding has failed.

• This sub-optimal decoder can fail in two ways:

 - The correct decoding, x, may correspond to an error pattern, $n = y - x$, that is not typical.

 - Some other codeword, x', may exist for which the error pattern $n' = y - x'$ is typical.

Bounding the Probability of Failure (I)

• The total probability of decoding failure is less than the sum of the probabilities of failing in these two ways.

 We will try to limit each of these to $\epsilon/2$.

• We can choose N to be big enough that

 $$P(f - \beta < w/N < f + \beta) \geq 1 - \epsilon/2$$

 This ensures that the actual error pattern will be non-typical with probability less than $\epsilon/2$.

• We now need to limit the probability that some other codeword also corresponds to a typical error pattern.

Bounding the Probability of Failure (II)

• The number of typical error patterns is

 $$J < 2^{N(H_2(f) + \beta \log_2((1-f)/f))}$$

• For a random codeword, x, other than the one actually transmitted, the corresponding error pattern given y will contain 0s and 1s that are independent and equally likely.

• The probability that one such codeword will produce a typical error pattern is therefore

 $$J/2^N < 2^{-N(1-H_2(f) - \beta \log_2((1-f)/f))}$$

• The probability that any of the other $M-1$ codewords will correspond to a typical error pattern is bounded by M times this. We need this to be less than $\epsilon/2$, ie

 $$M 2^{-N(1-H_2(f) - \beta \log_2((1-f)/f))} < \epsilon/2$$

Finishing the Proof

• Finally, we need to pick β, M, and N so that the two types of error have probabilities less than $\epsilon/2$, and the rate, R is at least $C - \eta$.

• We will let $M = 2^{[(C-\eta)N]}$, and make sure N is large enough that $R = [(C-\eta)N]/N < C$.

• With this value of M, we need

 $$2^{[(C-\eta)N]} 2^{-N(1-H_2(f) - \beta \log_2((1-f)/f))} < \epsilon/2$$

 $$\Rightarrow 2^{-N(1-H_2(f) - [(C-\eta)N]/N - \beta \log_2((1-f)/f))} < \epsilon/2$$

• The channel capacity is $C = 1 - H_2(f)$, so that

 $$1 - H_2(f) - [(C-\eta)N]/N = C - R$$

 is positive.

• For a sufficiently small value of β,

 $$1 - H_2(f) - [(C-\eta)N]/N - \beta \log_2((1-f)/f)$$

 will also be positive. With this β and a large enough N, the probabilities of both types of error will be less than $\epsilon/2$, so the total error probability will be less than ϵ.

• Recall that for a code to be guaranteed to correct up to \(t \) errors, its minimum distance must be at least \(2t + 1 \).
• What’s the minimum distance for the random codes used to prove the noisy coding theorem?
• A random \(N \)-bit code is very likely to have minimum distance \(d \approx N/2 \) — if we pick two codewords randomly, about half their bits will differ. So these codes are likely not guaranteed to correct patterns of \(N/4 \) or more errors.
• A BSC with error probability \(f \) will produce about \(Nf \) errors. So for \(f > 1/4 \), we expect to get more errors than the code is guaranteed to correct. Yet we know these codes are good!
• **Conclusion:** A code may be able to correct almost all patterns of \(t \) errors even if it can’t correct all such patterns.

Dimensionality of Product Codes

- Suppose \(C_1 \) is an \([N_1, K_1]\) code and \(C_2 \) is an \([N_2, K_2]\) code. Then their product will be an \([N_1N_2, K_1K_2]\) code.
- Suppose \(C_1 \) and \(C_2 \) are in systematic form. Here’s a picture of a codeword of the product code:

 ![Product Code Picture]

 - The dimensionality of the product code is not more than \(K_1K_2 \), since the message bits in the upper-left determine the check bits.
 - We’ll see that the dimensionality equals \(K_1K_2 \) by showing how to find correct check bits for any message.

Encoding Product Codes

- Here’s a procedure for encoding messages with a product code:
 1. Put \(K_1K_2 \) message bits into the upper-left \(K_2 \) by \(K_1 \) corner of the \(N_2 \) by \(N_1 \) array.
 2. Compute the check bits for the first \(K_2 \) rows, according to \(C_1 \).
 3. Compute the check bits for the \(N_1 \) columns, according to \(C_2 \).
- After this, all the columns will be codewords of \(C_2 \), since they were given the right check bits in step (3). The first \(K_2 \) rows will be codewords of \(C_1 \), since they were given the right check bits in step (2). But are the last \(N_2 - K_2 \) rows codewords of \(C_1 \)?
- Yes! Check bits are linear combinations of message bits. So the last \(N_2 - K_2 \) rows are linear combinations of earlier rows. Since these rows are in \(C_1 \), their combinations are too.
Minimum Distance of Product Codes

- If C_1 has minimum distance d_1 and C_2 has minimum distance d_2, then the minimum distance of their product is $d_1 d_2$.

Proof:
Let u_1 be a codeword of C_1 of weight d_1 and u_2 be a codeword of C_2 of weight d_2. Build a codeword of the product code by putting u_1 in row i of the array if u_2 has a 1 in position i. Put zeros elsewhere. This codeword has weight $d_1 d_2$.

The new codeword is the outer product of the vectors u_1 and u_2.

- Furthermore, any non-zero codeword must have at least this weight. It must have at least d_2 rows that aren’t all zero, and each such row must have at least d_1 ones in it.

Decoding Product Codes

- Products of even small codes (eg, $[7, 4]$ Hamming codes) have lots of check bits, so decoding by building a syndrome table may be infeasible.

- But if C_1 and C_2 can easily be decoded, we can decode the product code by first decoding the rows (replacing them with the decoding), then decoding the columns. (Or the other way around.)

- This will usually **not** be a nearest-neighbor decoder (and hence will be sub-optimal, assuming a BSC and equally-likely messages).

Why use Products of Codes?

- The analysis above shows that for large N, these product codes are both unlikely to correct all errors, and also that they have a low rate (approaching zero)!

- So why would we ever use them?

- One advantage of product codes: They can correct some **burst** errors — errors that come together, rather than independently.