Reminder: Hamming Codes

- Hamming Codes are perfectly packed linear codes which are guaranteed to correct any single-bit transmission error.
- For every integer $c \geq 2$, there is a Hamming code which encodes messages of $K = 2^c - c - 1$ bits into transmissions of length $N = 2^c - 1$. We have seen the [3,1] Hamming code (aka the repetition code) and the [7,4] code; the next code is [15,11], etc.
- To make a Hamming code of size N, we construct a $K \times N$ parity check matrix H whose N columns are the K-bit binary expansions of the integers from 1 to N.
- To encode a source message s, we compute the generator matrix G from H, and transmit $t = sG$.
- To decode, we use the clever trick called syndrome decoding.

Syndrome Decoding for Hamming Codes

- Consider the original (non-systematic) parity-check matrix:
 \[
 H = \begin{pmatrix}
 0 & 0 & 0 & 1 & 1 & 1 \\
 0 & 1 & 1 & 0 & 0 & 1 \\
 1 & 0 & 1 & 0 & 1 & 0
 \end{pmatrix}
 \]
- Suppose t is sent, but $r = t + n$ is received (n is channel noise).
- The receiver can compute the syndrome for r:
 \[
 z = rH^T = (t + n)H^T = tH^T + nH^T = nH^T
 \]
 Note that $tH^T = \vec{0}$ since t is a codeword.
- If there were no errors, $n = \vec{0}$, so $z = \vec{0}$.
- If there is one error, in position i, then nH^T will be the ith column of H — which contains the binary representation of the number i.
- So to decode, we compute the syndrome, and if it is non-zero, we flip the bit it identifies. Easy!

Decoding in General

- Syndrome decoding for general linear codes (other than Hamming codes) requires building a table of all possible syndromes and doing reverse lookup to find the best codeword.
- Problem: The size of the table is exponential in the number of check bits — it has $2^{N-K} - 1$ entries for an $[N,K]$ code.
- Maximum Likelihood/Nearest Neighbour decoding is even more expensive in general, and requires solving a linear system.
- For example, in an $[N,K]$ code, decoding for the BEC requires solving a system of $N-K$ equations and will take time proportional to $(N-K)^3$ using the most obvious algorithm. This time can be reduced somewhat by using cleverer algorithms, but for values of $N-K$ in the thousands, the time could still be quite substantial.
- Can we find a class of codes which is both compact to represent, easy to encode and easy to decode?
Example: Syndrome Decoding for the [5, 2] Code

- Recall the [5, 2] code with this parity-check matrix:
 \[
 \begin{pmatrix}
 1 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 1 & 0 \\
 1 & 0 & 1 & 0 & 1
 \end{pmatrix}
 \]

- Here is a syndrome decoding table for this code:

<table>
<thead>
<tr>
<th>z</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>00001</td>
</tr>
<tr>
<td>010</td>
<td>00010</td>
</tr>
<tr>
<td>011</td>
<td>00100</td>
</tr>
<tr>
<td>100</td>
<td>01000</td>
</tr>
<tr>
<td>101</td>
<td>10000</td>
</tr>
<tr>
<td>110</td>
<td>10100</td>
</tr>
<tr>
<td>111</td>
<td>01100</td>
</tr>
</tbody>
</table>

The last two entries are not unique, i.e., there are multiple noise vectors of weight 2 corresponding to each of those syndromes.

Building Low Density Parity Check Codes

- LDPC codes are built using sparse random parity check matrices.
- We can construct LDPC codes randomly, in various ways.
 One way: to make an \([N, K]\) code, randomly generate columns of \(H\) with exactly three 1s in them.
- For better results, equalize the number of 1s in each row (as much as possible) by randomly picking the position of the three 1s in the next column from among rows that don’t already have \(3N/(N-K)\) 1s in them.
- If each row (as well as each column) has exactly the same number of 1s, the code is called a regular Gallager code, after its inventor (1961).

What a Good Linear Code Looks Like

- We don’t want our linear codes to have very low-weight code words, because this means they have very small minimum distance.
- So the generator matrix for a good code should not be sparse — each row should have many 1s, so that encoding a message with only a few 1s still produces a codeword that has many 1s.
- The decoder’s perspective: To be confident of decoding correctly, getting even one bit wrong should produce a large change in the codeword, which will be noticeable (unless we’re very unlucky).
- Thus we should avoid sparse generator matrices. But can we use a sparse parity-check matrix? Doing so isn’t quite optimal, but such “Low Density Parity Check” (LDPC) codes can be very good.
- **The big advantage of LDPC codes:**
 There is a computationally feasible way of decoding them that is very good, though not exactly optimal.
Decoding LDPC Codes

- To encode a message with an LDPC, we just multiply it by the generator matrix. But how do we decode?
- The optimal method is to do maximum likelihood decoding, which often reduces to nearest neighbour decoding, i.e. picking the codeword nearest to what was received.
- But both maximum likelihood and nearest neighbour are computationally infeasible in general.
- The reason LDPC codes are interesting is that the sparseness of their parity-check matrices allows for an approximate (good, but not optimal) decoding method that works by propagating messages through a graph.

Graphical Representation of a Code

- We can represent a code by a graph:
 - Empty circles represent true bits of the original codeword.
 - Black circles represent received bits (message + check).
 - Black squares represent parity check equations.

Here’s a fragment of such a graph:

Notice that each codeword bit connects to three parity checks — corresponding to the three 1s in each column of H.

Each parity check connects to six codeword bits.

Our task: Fill in the empty circles.

A Larger Example

Here’s the graph for a [16,12] code.

This is called the Tanner Graph for the code. The nodes at the top are the variable nodes and the nodes at the bottom are the check nodes.

Decoding LDPC codes over the BEC

- Let’s consider decoding a LDPC code when the transmission uses a Binary Erasure Channel (BEC).
- Reminder: for the BEC, the input alphabet is $\{0, 1\}$, but the output alphabet is $\{0, ?, 1\}$. The “?” output represents an “erasure” (corruption), in which the transmitted symbol is lost, but the receiver knows it was lost. (eg error correcting memory)
- An erasure happens with probability f; otherwise, the symbol is received correctly.
Decoding by Passing Messages

- If the correct value for a bit in a codeword is known — either because it was received correctly through the channel, or because its value has been determined in the decoding process — this bit in the codeword sends a message to all parity checks of which it is a part, telling these parity checks what its value is.
- A parity check waits until it has received messages from all but one of the bits that participate in the parity check, at which point it can send a message to the remaining bit, telling it that its value must be the value needed for the parity check to come out correctly (given the values of the other bits, which are now known).
- This process of exchanging messages continues until no further messages can be sent. At this point, the codeword bits may all be determined, in which case decoding was successful, or some codeword bits may still be unknown, in which case decoding was not completely successful (though some of the erased bits may have been filled in with their correct values).

Decoding LDPC codes over the BSC

- A harder problem is decoding a LDPC code when the transmission uses a Binary Symmetric Channel (BSC), since there are no bits of the codeword we are certain about.
- For the BSC, the input and output alphabets are both \{0, 1\}.
- With probability \(f\), the symbol received is different from the symbol transmitted. With probability \(1 - f\), the symbol is received correctly.

\[
\begin{array}{c|c|c}
0 & f & f \\
\hline
1 & 1 - f & 1 - f \\
\end{array}
\]

- In this case, we can still do iterative decoding by passing messages, but the messages have to represent soft decisions or probabilities rather than hard decisions as before.

Decoding by Propagating Probabilities

- We can’t be absolutely sure of the codeword bits, but we can keep track of the odds in favour of 1 over 0 (the ratio of the probability of 1 over the probability of 0).
- Each black node will send each codeword bit it connects to a message giving its idea of what the odds for 1 over 0 should be for that bit.
- All the messages a codeword receives are multiplied to give the current idea of what the odds are for that bit — used to guess the codeword once these odds have stabilized.
- But first, we iterate: Each codeword bit sends each parity check it connects to a message with its current odds, which the parity check node uses to update its messages to other codeword bits. Messages propagate until the odds have stabilized.

Details of the Messages

- **Received data bit to codeword bit:** For a BSC, odds sent are \((1 - f)/f\) if the received data is 1, \(f/(1 - f)\) if the received data is 0. (For a BEC, the odds are either 0, 1, or \(\infty\), which produces the simple message passing algorithm used in the last assignment.)
- **Parity check to codeword bit:** Message is the probability of the parity check being satisfied if that bit is 1, divided by the probability if that bit is 0. These probabilities are calculated based on that parity check’s idea of the odds for the other bits in the parity check being 1 versus 0.
- **Codeword bit to a parity check:** Message is the odds of the bit being 1 versus 0, based on the received data, and on the messages from the other parity checks the codeword bit is involved in.
• Messages send between codeword bits and parity checks exclude information obtained from the node the message is being sent to. This avoids undesirable “double-counting” of information when a message comes back from that node.

• **But:** This works perfectly only if the graph is a tree. If there are cycles in the graph, information can return to its source indirectly.

• This is why probability propagation is only an *approximate* decoding method. It works well up to a point, but doesn’t have as low an error rate as nearest-neighbor (maximum likelihood) decoding would achieve.

Performance of LDPC Codes

• Rate $1/2$ LDPC codes with three bits in each column of H, with varying codeword lengths, tested using a BSC with varying error probability, f, and hence capacity, $C = 1 - H_2(f)$.

• Here are the block error rates for three such codes, estimated from 1000 simulated messages:

<table>
<thead>
<tr>
<th>f</th>
<th>C</th>
<th>$[100, 50]$</th>
<th>$[1000, 500]$</th>
<th>$[10000, 5000]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.86</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.03</td>
<td>0.81</td>
<td>0.012</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.04</td>
<td>0.76</td>
<td>0.059</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.05</td>
<td>0.71</td>
<td>0.108</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.06</td>
<td>0.67</td>
<td>0.213</td>
<td>0.005</td>
<td>0.000</td>
</tr>
<tr>
<td>0.07</td>
<td>0.63</td>
<td>0.327</td>
<td>0.104</td>
<td>0.000</td>
</tr>
<tr>
<td>0.08</td>
<td>0.60</td>
<td>0.482</td>
<td>0.404</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Tests were done with software available from Radford Neal’s web page, http://www.cs.utoronto.ca/~radford/.

History of LDPC and Related Codes

• Gallager, LDPC codes — 1961.

 Surprisingly good codes, practically decodable, but not really understood.

• MacKay and Neal — 1995.
 Reinvent LDPC codes, slightly improved. Show they’re almost as good as TURBO codes. Decoding algorithm related to other probabilistic inference methods.

• Many (Richardson, Frey, etc.) — ongoing.
 Further improvements in LDPC codes, relationship to TURBO codes, theory of why it all works.