Reminder: Classification

- Multiple inputs x (can be continuous, discrete or both).
- Single discrete output y.
- Goal: predict output on future unseen inputs.
- From a probabilistic point of view, we are using Bayes rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_y p(x|y')p(y')}$$
Voronoi Tessellation, Decision Surfaces

- For continuous inputs, we can view the problem as one of segmenting the input space into regions which belong to a single class, i.e. constant output.
- Such a segmentation is the “Voronoi tessellation” for our classifier.
- The boundaries between regions are the “decision surfaces”.
- Training a classifier == defining decision surfaces.

Probabilistic Model, Bayes Error Rate

- Model original data as coming from joint pdf $p(x, y)$. Classification == trying to learn conditional density $p(y|x)$.
- Even if we get the perfect model, our error rate may not be zero. Why? Classes may overlap.
- The best we could ever do if our cost function is number of errors is to guess $y^* = \arg\max_y p(y|x)$.
 (The error rate of this procedure is known as the “Bayes error”.)

K-Nearest-Neighbour

- Finally: a real algorithm!
- To classify a test point, chose the most common class amongst its K nearest neighbours in the training set.

Algorithm K-NN

```plaintext
c-test ← KNN(K, x-train, c-train, x-test)  
{  
d(m,n) = distance between x-train(m) and x-test(n)  
n(n,1) = index of l-th smallest entry of d(:,n) [∗]  
c(n,1) = c-train(n(n,1))  
c-test(n) = most common value in c(n,1:K) [∗∗]  
}  
```
- If ties at ∗ when $l = K$, increase K for that n only.
- If ties at ∗∗, decrease K for that n only.
- confidence $\approx (\#$votes for class) / K
- Q: How should we select K? A: Cross-Validation (coming soon).

More on K-NN

- Typical distance = squared Euclidean $d(m,n) = \sum_d (x_d^m - x_d^n)^2$
- If Euclidean distance is used, decision surfaces are piecewise linear.
- Trick: remember the K^{th} smallest distance so far, and break out of the summation over dimensions if you exceed it.
- In low-d with lots of training points you can build “KD trees”, “ball trees” or other data structures to speed up the query time.
- In high-d, save time by computing the distance of each training point from the min corner and using the “annulus bound”.
Error Bounds for NN

- Amazing fact: asymptotically, \(\text{err}(1-\text{NN}) < 2 \text{ err(Bayes)} \):
 \[e_B \leq e_{1NN} \leq 2e_B - \frac{M}{M-1}e_B^2 \]
 this is a tight upper bound, achieved in the “zero-information” case when the classes have identical densities.
- For K-NN there are also bounds. e.g. for two classes and odd K:
 \[e_B \leq e_{KNN} \leq \sum_{i=0}^{(K-1)/2} \binom{k}{i} \left[e_B^{i+1}(1-e_B)^{k-i} + e_B^{k-i}(1-e_B)^{i+1} \right] \]

Example: USPS Digits

- Take 16x16 grayscale images (8bit) of handwritten digits.
- Use Euclidean distance in raw pixel space (dumb!) and 7-nn.
- Classification error (leave-one-out): 4.85%.

Nonparametric (Instance-Based) Models

- Q: What are the parameters in K-NN? What is the complexity?
 A: the scalar K and the entire training set.
 Models which need the entire training set at test time but (hopefully) have very few other parameters are known as nonparametric, instance-based or case based.
- What if we want a classifier that uses only a small number of parameters at test time? (e.g. for speed or memory reasons)
 Idea 1: single linear boundary, of arbitrary orientation
 Idea 2: many boundaries, but axis-parallel & tree structured

Linear Classification for Binary Output

- Goal: find the line (or hyperplane) which best separates two classes:
 \[c(x) = \text{sign}\left[x^T w - w_0 \right] \]
- \(w \) is a vector perpendicular to decision boundary
- This is the opposite of non-parametric: only \(d + 1 \) parameters!
- Typically we augment \(x \) with a constant term \(\pm 1 \) (“bias unit”) and then absorb \(w_0 \) into \(w \), so we don’t have to treat it specially.
Fisher’s Linear Discriminant

• Observation: If each class has a Gaussian distribution (with same covariances) then the Bayes decision boundary is linear:

\[w^* = \Sigma^{-1}(\mu_0 - \mu_1) \]

\[w_0 = \frac{1}{2} w^\top (\mu_0 + \mu_1) - w^\top (\mu_0 - \mu_1) \left[\frac{\log p_0 - \log p_1}{(\mu_0 - \mu_1)^\top \Sigma^{-1}(\mu_0 - \mu_1)} \right] \]

• Idea (Fisher’36):
 Assume each class is Gaussian even if they aren’t!
 Fit \(\mu_i \) and \(\Sigma \) as sample mean and sample covariance (shared).

• This also maximizes the ratio of cross-class scatter to within class scatter: \((\bar{z}_0 - \bar{z}_1)^2 / (\text{var}(z_0) - \text{var}(z_1)) \)

Perceptron Algorithm

• The architecture we are using

\[c(x) = \text{sign}[x^\top w - w_0] \]

can be thought of as a circuit/network.

• It was studied extensively in the 1960s and is known as a perceptron.

• There is another way to train the weights, other than Fisher.

Algorithm perceptronTrain (Rosenblatt’56)

\[w \leftarrow \text{perceptronTrain}(x\text{-train},c\text{-train}) \]

\[
\begin{align*}
&\text{w = ‘small’ random values;} \\
&\text{do} \\
&\text{for n=1:N} \\
&\text{if (c-train(n) != sign[w'*xtrain(n)]) then} \\
&\text{w = w + c - train(n)*xtrain(n); errors++; } \\
&\} \\
&\text{until(errors==0)}
\end{align*}
\]

Perceptron Learning Rules

• Now: cycle through examples, when you make an error, add/subtract the example from the weight vector depending on its true class.

• Amazingly, for separable training sets, this always converges.
 (We absorb the threshold as a “bias” variable always equal to -1.)

• For non-separable datasets, you need to remember the sets of weights which you have seen so far, and combine them somehow.

• One way: keep the set that survived unchanged for the longest number of (random) pattern presentations. (Gallant’s pocket algorithm.)

• Better way: Freund & Shapire’s voted perceptron algorithm.
 Remember all sets and the length of time they survived.

• Perceptron, voted-perceptron, weighted-majority, kernel perceptron, Winnow, and other algorithms have a frumpy reputation but they are actually extremely powerful and useful, especially using the kernel trick. Try these before more complex classifiers such as SVMs!
Decision Trees

- What if we want more than two regions?
- We could consider a fixed number of arbitrary linear segments but even cheaper is to use axis-aligned splits (one dimension each).
- If these form a hierarchical partition, then the classifier is called a decision tree or (axis-aligned) classification tree.
- Each internal node tests one attribute; leaves assign a class.
- Equivalent to a disjunction of conjunctions of constraints on attribute values (if-then rules).

![Decision Tree Diagram]

Learning (Inducing) Decision Trees

- Need to pick the order of split axes and values of split points. Many algorithms: CART, ID3, C4.5, C5.0.
- Almost all have the following structure:
 1. Put all examples into the root node.
 2. At each node: search all dimensions, on each one chose split which most reduces impurity; chose the best split.
 3. Sort the data cases into the daughter nodes based on the split.
 4. Recurse until a leaf condition:
 - number of examples at node is too small
 - all examples at node have same class
 - all examples at node have same inputs
 5. Prune tree down to some maximum number of leaves. (Possibly using a different impurity measure than for growing.)

Cost Function for Decision Trees

- Define a measure of “class impurity” in a set of examples. Push each example down the tree, how “pure” are leaves?
- Goal: minimize expected sum of impurity at leaves at test time.
- Two problems:
 1) We don’t know true distribution $p(x, y)$.
 2) Search: even if we knew $p(x, y)$ finding optimal tree is NP.
- So we will take a suboptimal (greedy) approach.

![Cost Function Diagram]

Impurity Measures

- When considering splitting data D at a node on x_i, we measure:
 \[
 \text{Gain}(D; x_i) = I(D) - \sum_{v \in \text{split}(x_i)} \frac{|D_{iv}|}{|D|} I(D_{iv})
 \]
- Common impurity measures:
 - Entropy: $I(D) = -\sum_c p_c(D) \log p_c(D)$ (two classes)
 - Misclass: $I(D) = 1 - p_c$
 - Gini: $I(D) = 1 - \sum_c (1 - p_c(D))^2$

 (Gini is the average error if we stochastically classify with node prior)
- These often favour multi-way splits.
- One solution: normalize by “split information”:
 \[
 S(D) = -\sum_v \frac{|D_{iv}|}{|D|} \log \frac{|D_{iv}|}{|D|}
 \]
A better solution is to always constrain ourselves to binary splits.

For ordered discrete or real valued nodes, split is natural. Also easy to compute.

For a discrete attribute with \(M \) settings, looks like we need to consider \(2^M - 1 \) splits. But for two classes, there is a trick:
1. Order the settings according to \(p(c|x_i = m) \).
2. Search exhaustively over \(q \), grouping first \(q \) and last \(M - q \).
3. Optimal split is one of those.

For real valued attributes, what splits should we consider?

Idea1: discretize the real value into \(M \) bins.

Idea2: Search for a scalar value to split on. Sounds hard! Lots of real values. But there is a trick: Only need to consider splits at midpoints between observed values.

In fact, only need to consider splits at midpoints between observed values with different classes.

Complexity: \(N \log N + 2N|C| \)

Just as with most other models, decision trees can overfit. In fact they are quite powerful.

eg: Expressive power of binary trees
Q: If all input and outputs are binary, what class of Boolean functions can DTs represent?
A: All Boolean functions.

Hence we must regularize to control capacity.

Typically we do this by limiting the number of leaf nodes. Formally, we define:
\[
\Phi(T) = \sum_{\text{leaves}} I(l) + \alpha|\text{leaves}|.
\]

Minimizing this for any \(\alpha \) is equivalent to finding the tree of a fixed size with smallest impurity. (cf. Lagrange multipliers).

Practically, we achieve this via pruning. Often we use Gini/Entropy to grow tree and Misclass to prune it.
Pruning Decision Trees

- Finding the “optimal” pruned tree.
 It can be shown that if you start with a tree T_0 and insist on using
 a rooted subtree of it, the following sequence of trees contains the
 optimum tree for all numbers of leaves:
 1. Let $U(\text{node}) = I(\text{node}) - I(\text{subtree-rooted-at-node})$
 2. Replace the non-leaf node with the smallest value of:
 $U(\text{node})/\text{leaves-below-node}$
 with a leaf node having majority class.
- Even after pruning, decision trees still have problems:
 - cannot capture additive structure (OR), for this MARS is better
 - cannot deal with linear combinations of variables

Open questions...

- How do we chose K in K-NN? (Cross-validation)
- How do we chose T_{max} for decision trees? (Cross-validation)
- Can Fisher’s Discriminant overfit? (What do you think?)
- What about nearest-neighbour or tree-based models for regression
 as well as classification? (Good idea!)

Next class: Logistic regression, Neural Nets for Classification, Class-
Conditional Models (Gaussian and Naive Bayes)

DT Variants

- ID3 (Quinlan)
 - split values are all possible values of x_i
 - $I(D)$ is entropy, no pruning
- C4.5, C5.0 (Quinlan)
 - binary splits
 - $I(D)$ is entropy
 - error-pruning
 - “rule simplification”
- CART (Breiman et. al)
 - binary splits
 - $I(D)$ is Gini
 - minimum-leaf subtree pruning