Lecture 2:
Classification I

Sam Roweis

September 16, 2003

Reminder: Classification

- Multiple inputs x, mixed cts. and discrete.
- Single discrete output y.
- Goal: predict output on future unseen inputs.
- From a probabilistic point of view, we are using Bayes rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{\sum_{y'} p(x|y')p(y')}{p(x)}$$

Probabilistic Model, Bayes Error Rate

- Model original data as coming from joint pdf $p(x, y)$.
 Classification == trying to learn conditional density $p(y|x)$.
- Even if we get the perfect model, our error rate may not be zero.
 Why? Classes may overlap.
- The best we could ever do if our cost function is number of errors
 is to guess $y^* = \arg\max_y p(y|x)$.
 (The error rate of this procedure is known as the “Bayes error”.)

Voronoi Tessellation, Decision Surfaces

- For continuous inputs, we can view the problem as one of
 segmenting the input space into regions which belong to a single
 class, i.e. constant output.
- Such a segmentation is the “Voronoi tessellation” for our classifier.
- The boundaries between regions are the “decision surfaces”.
- Training a classifier == defining decision surfaces.
Finally: a real algorithm!

To classify a test point, choose the most common class amongst its \(K \) nearest neighbours in the training set.

Algorithm K-NN

\[
c_{\text{test}} \leftarrow \text{KNN}(K, x_{\text{train}}, c_{\text{train}}, x_{\text{test}}) \{
 d(m,n) = \text{distance between } x_{\text{train}}(m) \text{ and } x_{\text{test}}(n)
 n(n, l) = \text{index of } l\text{-th smallest entry of } d(:, n) \left[* \right]
 c(n, l) = c_{\text{train}}(n(n, l))
 c_{\text{test}}(n) = \text{most common value in } c(n, 1:K) \left[** \right]
\}
\]

- If ties at
 * increase \(K \) for that \(n \) only.
- If ties at ** decrease \(K \) for that \(n \) only.
- confidence = (#votes for class) / \(K \)

Error Bounds for NN

- Amazing fact: asymptotically, \(e_{1-\text{NN}} < 2 \, e_{\text{Bayes}} \):
 \[e_B \leq e_{1,NN} \leq 2e_B - \frac{M}{M-1} \left(1 - e_B \right) \]
 This is a tight upper bound, achieved in the “zero-information” case when the classes have identical densities.
- For K-NN there are also bounds. e.g. for two classes and odd \(K \):
 \[e_B \leq e_{K,NN} \leq \sum_{i=0}^{(K-1)/2} \binom{k}{i} \left[\left(e_B^i \right)^{k-i} + \left(1 - e_B \right)^{k-i} \right] \]

More on K-NN

- Typical distance = squared Euclidean
 \[d(m, n) = \sum_d (x_d^m - x_d^n)^2 \]
- Remember the \(K^{th} \) smallest distance so far, and stop the summation above when you exceed it.
- In high-d, save time by computing the distance of each training point from the min corner and using the “annulus bound”.
- In low-d with lots of training points you can build “KD trees”, “ball trees” or other data structures to speed up the query time.
- If Euclidean distance is used, decision surfaces are piecewise linear.

Example: USPS Digits

- Take 16x16 grayscale images (8bit) of handwritten digits.
- Use Euclidean distance in raw pixel space (dumb!) and 7-nn.
- Classification error: 4.85%.
Nonparametric (Instance-Based) Models

- Q: in K-NN, what are the parameters?
 A: the scalar K and the entire training set.
 A model which needs the entire training set at test time but (hopefully) has very few other parameters is known as nonparametric, instance-based or case based.

- What if we want a classifier that uses only a small number of parameters at test time? (e.g. for speed or memory reasons)
 Idea 1: single linear boundary, of arbitrary orientation
 Idea 2: many boundaries, but axis-parallel & tree structured

Fisher’s Linear Discriminant

- Observation: If each class has a Gaussian distribution (with same covariances) then the Bayes decision boundary is linear:

 \[
 \mathbf{w}^* = \mathbf{\Sigma}^{-1}(\mu_0 - \mu_1) \\
 w_0^* = \frac{1}{2} \mathbf{w}^T (\mu_0 + \mu_1) - \mathbf{w}^T (\mu_0 - \mu_1) \left[\frac{\log p_0 - \log p_1}{(\mu_0 - \mu_1)^T \mathbf{\Sigma}^{-1} (\mu_0 - \mu_1)} \right]
 \]

- Idea (Fisher’36):
 Assume each class is Gaussian even if they aren’t!
 Fit \(\mu_i \) and \(\mathbf{\Sigma} \) as sample mean and sample covariance.

- This also maximizes the ratio of cross-class scatter to within class scatter: \((z_0 - z_1)^2 / (\text{var}(z_0) - \text{var}(z_1)) \)

Linear Classification for Binary Output

- Goal: find the line (or hyperplane) which best separates two classes:
 \[c(x) = \text{sign}[\mathbf{x}^T \mathbf{w}_{\text{weight}} - w_{\text{threshold}}] \]

- \(\mathbf{w} \) is a vector perpendicular to decision boundary

- This is the opposite of non-parametric: only \(d + 1 \) parameters!

- Typically we augment \(\mathbf{x} \) with a constant term \(\pm 1 \) (“bias unit”) and then absorb \(w_0 \) into \(\mathbf{w} \), so we don’t have to treat it specially.

Digits again

Train to discriminant “5” from others.
Error = 3.59%
Linear Discriminants are Perceptrons

- The architecture we are using
 \[c(x) = \text{sign}[x^\top w - w_0] \]
 can be thought of as a circuit/network.
- It was studied extensively in the 1960s and is known as a perceptron.
- There is another way to train the weights, other than Fisher.

Algorithm perceptronTrain (Rosenblatt'56)

```
 w ← perceptronTrain(x-train, c-train) { 
    w = "small" random values;
    do { 
        errors=0;
        for n=1:N { if(c-train(n) != sign[w'*xtrain(n)]) then {
            w = w + c - train(n)*xtrain(n); errors++;
        } }
    } until(errors==0)
 }
```

Perceptron Learning Rules

- Now: cycle through examples, when you make an error, add/subtract the example from the weight vector depending on its true class.
- Amazingly, for separable training sets, this always converges. (We absorb the threshold as a "bias" variable always equal to -1.)
- For non-separable datasets, you need to remember the sets of weights which you have seen so far, and combine them somehow.
- One way: keep the set that survived unchanged for the longest number of (random) pattern presentations. (Gallant’s pocket algorithm.)
- Better way: Freund & Shapire’s voted perceptron algorithm.
- Perceptron, voted-perceptron, weighted-majority, kernel perceptron, Winnow, and other algorithms have a frumpy reputation but they are actually extremely powerful and useful, especially using the kernel trick. Try these before more complex classifiers such as SVMs!

Tree Structured Axis-Aligned Classifiers

- What if we want more than two regions?
- We could consider a fixed number of arbitrary linear segments (*) but even cheaper is to use axis-aligned splits.
- If these form a hierarchical partition, then the classifier is called a decision tree or classification tree.
- Each internal node tests one attribute; leaves assign a class.
- Equivalent to a disjunction of conjunctions of constraints on attribute values (if-then rules).

Cost Function for Decision Trees

- Define a measure of “class impurity” in a set of examples.
- Goal: minimize expected sum of impurity at leaves.
- Two problems:
 1) We don’t know true distribution \(p(x, y) \).
 2) Search: even if we knew \(p(x, y) \) finding optimal tree is NP.
- So we will take a suboptimal (greedy) approach.
Learning (Inducing) Decision Trees

- Need to pick the order of split axes and values of split points.
 Many algorithms: CART, ID3, C4.5, C5.0.
- Almost all have the following structure:
 1. Put all examples into the root node.
 2. At each node: search all dimensions, on each one chose split
 which most reduces impurity; chose the best split.
 3. Sort the data cases into the daughter nodes based on the split.
 4. Recurse until a leaf condition:
 - number of examples at node is too small
 - all examples at node have same class
 - all examples at node have same inputs
 5. Prune tree down to some maximum number of leaves.

Impurity Measures

- When considering splitting data D at a node on x_i, we measure:

\[
\text{Gain}(D; x_i) = I(D) - \sum_{v \in \text{split}(x_i)} \frac{|D_{iv}|}{|D|} I(D_{iv})
\]

- Common impurity measures:
 Entropy: $I(D) = -\sum_c p_c(D) \log p_c(D)$
 Misclass: $I(D) = 1 - p_c^*$
 Gini: $I(D) = \sum_c \sum_{c' \neq c} p_c(D) p_{c'}(D) = \ldots$
 (this is the avg. error if we stochastically classify with node prior)
- These often favour multi-way splits.
- One solution: normalize by “split information”:

\[
S(D) = -\sum_v \frac{|D_{iv}|}{|D|} \log \frac{|D_{iv}|}{|D|}
\]

Binary Splits

- A better solution is to always constrain ourselves to binary splits.
- For ordered discrete or real valued nodes, split is natural.
 Also easy to compute (*).
- For a discrete attribute with M settings, looks like we need to
 consider $2^M - 1$ splits. But for two classes, there is a trick:
 1. Order the settings according to $p(c|x_i = m)$.
 2. Search exhaustively over q, grouping first q and last $M - q$.
 3. Optimal split is one of those.

Real Valued Attributes

- For real valued attributes, what splits should we consider?
 Idea1: discretize the real value into M bins.
 Idea2: Search for a scalar value to split on.
 Sounds hard! Lots of real values. But there is a trick:
 Only need to consider splits at midpoints between observed values.
 In fact, only need to consider splits at midpoints between observed
 values with different classes.
- Complexity: $N \log N + 2N|C|$
Algorithm: DT

root of decision tree = \text{SplitNode}(\text{train-data}, \text{nmin})

subtree \leftarrow \text{SplitNode}(D) \{ \\
c = \text{most common class in } D \\
\text{if (all class}(D) \text{ same) or (all } x(D) \text{ same) or (size}(D) < \text{nmin}) \\
\text{then return a leaf of class } c \\
\text{else for each } x_i \text{ measure } \text{Gain}(D; x_i) \\
\text{return a node which splits on best } x_i \text{ and has daughters:} \\
- \text{SplitNode}(\text{Div}) \text{ for all split vals } v \text{ with nonempty Div} \\
- \text{leaf of class } c \text{ for values with empty Div} \} \\
\text{G} \leftarrow \text{Gain}(D, i) \{ \\
G = I(D) \\
\text{for each value } v \text{ in split}(x_i) \\
\text{Div} = \text{cases in } D \text{ with } x_i = v \\
G = G - I(\text{Div})*\text{size}(\text{Div})/\text{size}(D) \} \\
\text{Pruning Decision Trees} \\

- Finding the “optimal” pruned tree.
It can be shown that if you start with a tree \(T_0 \) and insist on using a rooted subtree of it, the following sequence of trees contains the optimum tree for all numbers of leaves:
1. Let \(U(\text{node}) = I(\text{node}) - I(\text{subtree-rooted-at-node}) \)
2. Replace the non-leaf node with the smallest value of: \(U(\text{node})/\text{leaves-below-node} \) with a leaf node having majority class.

- Still have problems:
 - cannot capture additive structure (OR)
 - cannot deal with linear combinations of variables

Overfitting in Trees

- Just as with most other models, decision trees can overfit. In fact they are quite powerful.

- eg: Expressive power of binary trees
 Q: If all input and outputs are binary, what class of Boolean functions can DTs represent?
 A: All Boolean functions.

- Hence we must regularize to control capacity.

- Typically we do this by limiting the number of leaf nodes. Formally, we define: \(\Phi(T) = \sum_{\text{leaves}} I(l) + \alpha|\text{leaves}| \).

- Minimizing this for any \(\alpha \) is equivalent to finding the tree of a fixed size with smallest impurity. (cf. Lagrange multipliers).

- Practically, we achieve this via pruning.

DT Variants

- ID3 (Quinlan)
 - split values are all possible values of \(x_i \)
 - \(I(D) \) is entropy - no pruning

- C4.5, C5.0 (Quinlan)
 - binary splits
 - \(I(D) \) is entropy - error-pruning
 - “rule simplification”

- CART (Breiman et. al)
 - binary splits
 - \(I(D) \) is Gini
 - minimum-leaf subtree pruning
Still to come…

- How do we chose K in K-NN?
- How do we chose T_{max} for decision trees?
- Can Fisher’s Discriminant overfit?
- Logistic regression