Sylvester-Gallai-like Theorems for Polygons in the Plane

Jon Lenchner
IBM

The Sylvester-Gallai Theorem says that given a finite collection of lines in the projective plane there must be a point where exactly two of the lines intersect - a so-called ordinary point. I consider the analogous problem in the context of simple polygons without holes. Starting with such a polygon P, consider an arbitrary finite set of lines through the interior of P, together with the lines determined by the edges of P. Now consider the vertices, edges and cells of the arrangement that lie on or inside P. I call this set an arrangement in P and derive various Sylvester-Gallai-like Theorems for such arrangements, given various different types of polygons P. I will also consider a colored cousin of the Sylvester-Gallai Theorem, known as the Motzkin-Rabin Theorem, and provide analogs of this Theorem, again in the setting of polygons.

I will describe how these results connect back to a famous problem, which Ricky Pollack calls the Quantitative Sylvester Problem, - namely for n not all coincident lines in the projective plane, how many ordinary points must there be?

For more information please visit the seminar website at:
http://www.math.nyu.edu/seminars/geometry_seminar.html.