Random matrices: Universality of the spectral distribution and the circular law

Van Vu
Rutgers University

Given a $n \times n$ complex matrix A, let $\mu_A(x, y)$ be the counting measure generated by the (complex) eigenvalues of A.

We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD $\mu_{\frac{1}{\sqrt{n}} A_n}$ of a random matrix $A_n = (a_{ij})_{1 \leq i, j \leq n}$ where the random variables $a_{ij} - E(a_{ij})$ are iid copies of a fixed random variable x with unit variance. We prove a universality principle for such ensembles, namely that the limit distribution in question is independent of the actual choice of the atom variable x. In particular, in order to compute this distribution, one can assume that x is real or complex gaussian. As a related result, we show how laws for this ESD follow from laws for the singular value distribution of $\frac{1}{\sqrt{n}} A_n - zI$ for complex z.

As a corollary we establish the Circular Law conjecture (in both strong and weak forms), that asserts that $\mu_{\frac{1}{\sqrt{n}} A_n}$ converges to the uniform measure on the unit disk when the a_{ij} have zero mean. (In particular, this strengthens the result I discussed in a colloquium at NYU in November 2007)

The proof uses tools from additive combinatorics, probability and high dimensional geometry.

(The talk is based on a recent paper "Random matrices: Universality of ESDs and the circular law", by T. Tao and V. Vu, with an appendix by M. Krishnapur.)

For more information please visit the seminar website at:
http://www.math.nyu.edu/seminars/geometry_seminar.html.