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Epsilon Nets and
Transversals of Hypergraphs

For historical reasons, a finite set-system is often called a hypergraph. More
precisely, a hypergraph H consists of a finite set V(H) of vertices (points) and
a family E(H) of subsets of V(H). The elements of E(H) are usually called
hyperedges (or, in short, edges). If the hyperedges of H are r-element sets, then
H is said to be an r-uniform hypergraph. Using this terminology, a graph is a
two-uniform hypergraph. In Chapter 10 we have extended some graph-theoretic
results to r-uniform hypergraphs (cf. Theorems 10.11 and 10.12).

The concept of hypergraphs is a very general one, so it is not surprising
that hypergraph theory has a large scale of applications in various fields of
mathematics, including geometry. Given a hypergraph H, a subset 7' ¢ V(H) is
called a transversal of H if T E is nonempty for every edge E € E(H). Many
extremal problems from combinatorics and geometry can be reformulated as
questions of the following type: What is the size of a smallest transversal in a
given hypergraph H ? This problem, in general, is known to be computationally
intractable (cf. Garey and Johnson, 1979). However, under certain specific
conditions on H, one can guarantee the existence of a relatively small
transversal. The present chapter focuses on results of this kind. In particular,
we shall see how a powerful probabilistic idea of Vapnik and Chervonenkis
can be applied to obtain a number of interesting geometric and algorithmic
results.

TRANSVERSALS AND FRACTIONAL TRANSVERSALS

Let H be a hypergraph with vertex set V(H) and edge set E(H). Let 7(H) denote
the size of a smallest transversal of H, that is, the smallest number 7 such that
one can choose 7 vertices with the property that any edge of H contains at least
one of them. 7(H) is usually called the transversal number (or the vertex-cover
number) of H.

The packing number (or matching number) of a hypergraph H is defined as
the largest number » = »(H) such that H has » pairwise disjoint hyperedges.
Obviously, »(H) < 7(H) for any hypergraph H. Typically, 7(H) is strictly larger
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244 Epsilon Nets and Transversals of Hypergraphs

than »(H). In fact, 7(H) cannot even be bounded by any function of v(H) (see
Exercise 15.3).

Let R* denote the set of all nonnegative real numbers. Let us call a function
t: V(H) — R* a fractional transversal of H if

Z tx) =1 for every hyperedge E € E(H). (15.1)

The minimum of 3 _ vy 1(x) over all fractional transversals of H is called the
fractional transversal number of H, and is denoted by 7*(H). One can associate
with each transversal T of H a function t7: V(H) — R* defined as

if xeT,

il
‘T(x)‘{o if xé T,

Since this function satisfies (15.1) and > _ v tr@x) = |7, we have that
"(H) < 7(H).

Similarly, a fractional packing of H is a nonnegative function p: E(H) — R*
such that

Z pPE) <1 for every vertex x € V(H).

The maximum of 3", P(E) over all fractional packings of H is called the
fractional packing number of H, and is denoted by v*(H). As before, we have
v'(H) 2 v(H).

It is easy to deduce directly from the definition that »"(H) < 7°(H) (see
Exercise 15.1). In fact, these two numbers are always equal to each other.
Moreover, the following is true.

Theorem 15.1. For every hypergraph H,

v(H) < v'(H)=1"(H) < 7(H),

and the value of v*(H) = 7"(H) can be determined by linear programming.

Proof. Letx; (1 <i<n)and E; (1 <j<m) be the vertices and the edges
of H, respectively. Let A = (a;;) be the incidence matrix of H, i.e.,

= 1 ifI;EEj,
W=10 if xeE,.

Let A7 denote the transpose of A, and let 1, denote the matrix consisting of one
column of length n, all of whose entries are 1’s. Given a function t: V(H) — &
(and p: E(H) — R), let ¢ (resp. p) denote a matrix consisting of one column
whose ith entry is #(x;) (resp. p(E;)).
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Observe that ¢ is a fractional transversal of H if and only if
ATt>1, and 120.

Similarly, p is a fractional packing of H if and only if

Ap<1, and p20.
Thus,

7'(H) = min {17¢|A"t > 1,,,1 > 0},
v'(H) = max {1],p|Ap < 1,,p 2 0}.

These two linear programming problems are dual to each other, so it follows
immediately from the duality theorem of linear programming that their
solutions, 7" (H) and »"(H), are equal (see, e.g., Papadimitriou and Steiglitz,
1982; Chvatal, 1983; and Grotschel et al., 1987). 0O

In general, 7°(H) can be much smaller than 7(H) (see Exercise 15.3). The
following theorem of Lovisz (1975) shows that this is not the case when every
point of H belongs to relatively few hyperedges.

Theorem 15.2 (Lovéasz). Let H be a hypergraph whose every vertex is
contained in at most D edges. Then

T (H)<7(H)<(n D+ 1)7"(H).

Proof. We have to prove only the second inequality. Let 1: V(H) — R* be
a fractional transversal of H with 3 _,,, t(x) = 7°(H).

We are going to select a set of vertices x;,x,... by a greedy algorithm,
Let x; be any vertex of H whose degree (i.e., the number of edges containing
it) is maximal. Let D; denote the degree of x| in H, Set H, = H — x,, that
is, the hypergraph obtained from H by deleting the vertex x; and all edges
containing x. If x,...,x; € V(H) have already been selected, then let H; =
H —x; —x; — .-+ — x;. If H; has no edges, we stop. Otherwise, let x;;, be a
vertex of H; whose degree D;,, is maximal, and so on, Clearly,

|E(H)| — |E(Hiy1)| = Dy (15.2)

By the properties of t,

Sy

T
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EE)= D 1< Y Y )
Ee E(H;) Ee E(H) ve £

=2r(x)ZI

xe VH)) Ee E(H;)
Eax

< Y 0D

xe VM)
< D 7' (H).

Assume now that our procedure terminates in s steps; i.e., H, is empty. Then.
of course, 7(H) <s. Put Hy = H. By (15.2), we have

NS EHD| - )|

i=0 =0 Dis
CEH) S 5
S +Z|E(Hol( 5

Hence, using the inequality |E(H,)| < D, 17" (H) (0 € i < 5) and the fact D, > 1.
we obtain

* 'S il l l
s ST(H) +§ i (H)( D1 Ff)

) il D,'—Df'-i-
=7 (H)(l + - TL)

* 5 S l
<7 (H)(l * = k:'{;” I)
=1+ i l)

T k=Dg+1 K

<7'(H)(1 +1n D)).

Thus,

T(H)<s <7 (H)(1 +In D)),

as desired.
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< Z Z 1(x)

Ee E(Hy) xe E
() E 1
Ee E(H})
Esax
X }D|'+|

.

nates in s steps; i.e., Hy is empty. Then,
5.2), we have

1)| = |E(Hs1)]
DHI

1 1
IH,}i(E e= _DT)

7 (H) (0 £i <) and the fact Dy 2 1,

r'(H)(B—::— - DL.)

ki = Disi )

D
]
B )

D+l

ol
——

) (1 +1In Dy),
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VAPNIK-CHERVONENKIS DIMENSION

Suppose that for a public opinion poll we want to select a small number of
individuals representing all major sections of the society. First, we have to
choose certain categories of people and then decide which of these groups
are considered “important.” According to our democratic principles, we shall
measure the “importance” of a group by its size (in the percentage of the
population). Then the important groups will define a hypergraph H with the
property that |E| > e|V(H)| for every edge E € E(H), where € is some fixed
constant (0 < & < 1). The smallest number of people representing all important
groups is 7(H).

Clearly, the function 7(x) = 1/(g|V(H)|), for all x € V(H), is a fractional
transversal of H with 3 _, ., 1(x) = 1/e. Hence, 7°(H) < 1/¢, and Theorem
15.2 implies that

T(H) < %(In D+ 1), (15.3)

where D is the maximum degree of the vertices of H. This bound is extremely
poor if D is large.

In their seminal paper, Vapnik and Chervonenkis (1971) pointed out that if
H satisfies certain natural conditions, the above upper bound can be replaced
by a function depending only on €. To specify these conditions, we need some
preparation.

Definition 15.3. Let H = (V(H),E(H)) denote a hypergraph. A subset
A c V(H) is called shattered if for every B < A there exists an E e E(H)
such that E 1 A = B. The Vapnik-Chervonenkis dimension (or VC dimension)
of H is the cardinality of the largest shattered subset of V(H). It will be denoted
by VC-dim (H).

The following theorem was proved independently by Shelah (1972), Sauer
(1972), and Vapnik and Chervonenkis (1971).

Theorem 15.4. Let H be a hypergraph with n vertices and VC-dimension d.

Then
1= (5)5) -0 (3),

and this bound cannot be improved.

First Proof. The assertion is trivial if d = 0 or n € d. Assume that we have
already proved it for every hypergraph H with VC-dim (H) < d, and for every
hypergraph H with VC-dim (H) = d and |V(H)| < n.

Given a hypergraph H with n vertices and VC-dimension d, let us define two



248 Epsilon Nets and Transversals of Hypergraphs

other hypergraphs, H, and H,, as follows. Let V(H,) = V(H;) = V(H) - {x}
for some fixed x € V(H), and set

E(H,) = {E - {x}|E € E(H)},

E(H))={E€ EH)|x¢ E and EU {x}e€ EH)}.

Obviously, VC-dim (H,) £d and VC-dim (H;) <d — 1.
On the other hand, by the induction hypothesis,
|E(H)| = |E(H )|+ |E(H>)|
Sn-1y Syn-1
e
i= i=0
S0
f:{l( i )

The tightness of this bound follows from the fact that if E(H)
{Uc V||U|<d}, then VC-dim(H) = d.

£

We also include a slightly more complicated proof due to Frankl and Pach
(1983), because it is a good illustration of the so-called linear algebra method
(see, e.g., Babai and Frankl, 1988).

Second Proof. Let E(H) = {E;|1 <i<m},andletX;, 1 <j <3¢ ("), be

a list of all subsets of V(H) of size at most d. Define an m X Zia(':) matrix
A = (a;) by

n 1 ifE,';_DXj,
W=10 ifE DX,

Suppose, for contradiction, that m > 3¢ (). Then the rows of A are
linearly dependent over the reals; thus there exists a nonzero function
[:E(H) — R such that

> FE)=0  forevery X;.
E,‘;Xj

Let A ¢ V(H) be a minimal subset for which
Y fE)= a0,
E.i;hfl

(Sets A with nonzero sums certainly exist, for we get a nonzero sum for any
maximal element A of the family {A € E(H)|f(A) # 0}.) Obviously, |A| > d+ 1
Given any B C A, let
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V(H)) = V(H2) = V(H) - {x}

EU {x} € E(H))}.
d — 1:;
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F(B) - FE).
ENA=B

Thus, F(A) = «, and setting B = A — {a} for any fixed a € A,

FB)= Y, fE)- Y, f(E)

E;:B E[JA
=0-a=-«a

In general, if B is any (JA| — k)-element subset of A (0 < k <|A]), then

F(B) = (—-1)fa 0.

This yields, in particular, that there exists at least one hyperedge E; with E;NA =
B. Thus, A is shattered, contradicting our assumption that VC-dim (H) = d. [

Vapnik and Chervonenkis (1971) discovered an ingenious probabilistic
(counting) argument based on the above result, which leads to a substantial
improvement of the bound (15.3). They showed (in a somewhat different
setting) that there exists a function f(d,€) such that the transversal number
of every hypergraph H of VC-dimension d, all of whose edges have at least
€|V(H)| elements, is at most f(d, €) (see Exercise 15.6). The ideas of Vapnik
and Chervonenkis have been adapted by Haussler and Welzl (1987) and Blumer
et al. (1989) to obtain various upper bounds on f(d,€). These results were
sharpened and generalized by Komlos, Pach, and Woeginger (1992), as follows.
Given a finite set V, a function pu: V — R is called a probability measure if

Z wx) = 1.

The measure of any subset X c V is defined by u(X) = > _ y p(x).

Theorem 15.5 (Komlos et al.). Let H be a hypergraph of VC-dimensiond,
let € > 0, and let p be a probability measure on V(H) such that u(E) 2 € for
every E € E(H). Then 7(H) < t(d, €), where 1(d, €) denotes the smallest positive

integer t satisfying
d
T N =rle=1
2 Z( I_ ) (1 2 ?) <1
i=0
for some integer T > 1. Consequently, for any € < 1, we have

d 1 1
= =iy =
T(H) < 8(ln z +2Inln = +6)

(cf. Exercise 15.9).
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Proof. Let us select with possible repetition ¢ random points of V(H).
where the selections are done with respect to the probability measure p. We
get a random sample

xe [V = VH) X -+ x V(H).

B g
Himes

We say that x is a transversal of H if every edge E € E(H) contains at least
one point of x. Let /(E,x) denote the number of components of x that belong
to E, counting with multiplicity. Then

Pr[x is not a transversal of H] = Pr(3E € E(H): I(E,x) = 0].

Having picked the string x of length ¢, let us choose randomly another T - ¢
elements from V(H). Let y € [V(H)]"" denote this new string, and let = -
xy € [V(H)]" stand for the full sequence. Furthermore, let (z) = (xy) denote the
multiset of all elements occurring in z (i.e., they are counted with multiplicities
but their order is irrelevant).

For any E € E(H), I(E, y) is a random variable having binomial distribution
Let my be the median of I(E,y),

Prl(E,y) > mg] < % < PrlI(E,y) 2 mg].

The following inequality is an immediate consequence of the independence
of x and y.

Pr(3E e E(H):I(E,x) = 0]

Pr(AE € E(H):I(E,x)=0and I(E,y) 2 mg]|

Lmin, PrI(E,y) 2 mg]

< 2Pr[3E e E(H):I(E.x

0 and I(E,y) 2 mg]|.

For a fixed E € E(H), the conditional probability for given (z) = (xy)
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Pr[I(E,x) = 0 and I(E, y) = mg|(z)]
(i.0)
= x (E,z) 2 mg] —@I-’.—Z)——
I(E, z))

HE,z)
<XU(E,2) 2 mg) 1 - %)

<x [I(E,2) > m;._-](l = %)E

(Here x [A] is the characteristic function of A, that is, x [A] = 1 if A is true, and
0 otherwise.) d

By Theorem 15.4, a fixed multiset (z) has at most Z( i ) different
intersections with the edges of H. Thus, i=0

Pr(3E e E(H): I(E,x)=0and I(E,y) = mg | ()]

0 Tk

i=0

+—)
where m = mingc gy me. Using the known fact that the median of a binomial

distribution is within 1 of the mean,

= i —1>(T=te=1.
mz (T x)ELné:}”u(E) 12(T-ne-1

Hence, we obtain

Pr[3E e E(H): I(E,x) = 0] sz(ic)) (1- —1';)‘?"”2' >
0

=

If the last expression is less than 1, then x is a transversal of H, with positive
probability. This proves the first statement of the theorem. Choosing

| 1
tzl‘i(ln —+2Inln — +6)J,
€ E £
€
T= |_—r2_| ;
d
we get after some calculations that

(-4 <

i=D

provided that € < 5. O
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The above theorem is valid for any probability measure u defined on the
vertex set of H. In particular, one can choose p to be constant; that is, u(x) =
1/|V(H)| for every x € V(H). We can deduce another interesting result from
Theorem 15.5 by applying it to the measure B (x) = 1(x)/7"(H), where
t:V(H) — R" is a fractional transversal of H with D yan 1) = 7" (H).
Observe that in this case

WE)= Y W

rekE

i t(x) 1
D e

re E

holds for every E € E(H). Thus, choosing € = 1/7"(H) in Theorem 15.5, we
obtain the following.

Corollary 15.6 (Komlos et al.). Let H be any hypergraph of VC-dimension d.

(i) If every edge of H has at least €|V(H)| elements for some € < %, then

d7 | 1
7(H) < ?(m — +2nln Tc_-+6).

(i) If 7" (H) 2 2, then
7(H) <d7"(H)(In 7°(H) + 2 Inln 7" (H) + 6).

Next we show that for ¢ > 2, the bound given in Theorem 15.5 is close to
being optimal.

Theorem 15.7 (Komlds et al.).  Given any natural number d > 2 and any real
Y<2/(d +2), there exists a constant €4,y > 0 with the following property,

For any € < ¢, ., one can construct a hypergraph H of VC-dimension d, all
of whose edges have at least €|V(H)| points, and

1 1

>(d - =n =

T(H)2(d-2+7) = In =
Proof. Again, we use the probabilistic method. Let v’ be a fixed constant,
¥Y<v" <2/(d+2). Given a sufficiently small ¢, let n = (K/e)In(1/g), where
K is a constant depending only on d, v, and v’ (but not on &), which will be

specified later. Furthermore, let

El—d—'r'

r=Egn, P= 7
(+)

We assume that n, r, t are integers, disregarding all roundoff errors,

1 |
: =(d — = —_
! ( 2‘["}’)8 In
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~any probability measure x defined on the Let V be a fixed n-element set. Construct a hypergraph H on the vertex set
can choose u to be constant; that is, p(x) = V by randomly selecting some r-element subsets of V, where each r-tuple is
can deduce another interesting result from chosen independently with probability p. We are going to show that with high
the measure u’(x) = 1(x)/7*(H), where probability

isversal of H with 3 _ v 1) = 7'(H).

(i) VC-dim(H) =d, and

I_“'(") (i) 7(H) > 1.
: 1x) ’ Pr [VC-dim (H) > d]

7' (H) — '(H)

"

n ;
. < Pr[a fixed (d + 1)-element subset A c V is shattered by H
hoosing € = 1/7*(H) in Theorem 15.5, we (d+ l) [a ( ) c y H]

:( n )HPr[E!EeE(H):EﬂA:B]

¢t H be any hypergraph of VC-dimension d. d+1 o
1 €|V(H)| elements for some ¢ < 1, then ) (d n ) (1 S p)('ﬁilgl))
+ 1
I BgA
— +2Inln i+6)_
f ¢ n L (Ii-u‘-!) (d}‘I)
= - = r=}
() 0(1 a-pl0)
J:
(H)+2Inln 7" (H) +6). i Cat (At
bound given in Theorem 15.5 is close to = (d+ l) [!(1 — (1 =p)rd-1+i )
d+| d+ |
“ any natural number d = 2 and any real S (el N )
€14 > 0 with the following property, = (d +1 ) | (1 (1 =p)Vind-tss )

=

t a hypergraph H of VC-dimension d, all ’
points, and

dal
G e

| 1
2+7)—In —.
¥ { o €

=

<
listic method. Let v’ be a fixed constant, :(d:l p(”:j:;)(p(";f; ])‘m
<

ly Zl::ll f: tl,et n = (K/e) In(l./e), \?here ) | v
ol g i “s{7) (5" b))
(ki 1)
£

1 1
I:(d-.2+ e
I‘)e n E

which tends to 0 as € — 0. This proves (i).

regarding all roundoff errors. Next we show that (ii) also holds with high probability.
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Pr[-r(H)sr]z(’:) et

<(7) solo(",)]
<(2) ool A7) (1 =) ]

From this, using the inequality 1 — ax > e for b>a, 0 <x < 1/a - 1/b,
we obtain the upper bound

(ﬁ:l)' exp [_p(?:)e-m{(lc—m]

ek f 1=d=5"+K(d~2 =
S a0 B0 _gl-d=7"+K( + /(K ~d) :
(7=227) ot !

which tends to 0 if

l-d-v"+K(d-2+v)/(K-d)<-1,
i.e., if K is sufficiently large. O

The condition d = 2 in Theorem 15.7 is not merely a technical assumption.
In fact, it is not hard to characterize all finite hypergraphs H with VC-dimension

I, and one can check that 7(H) <[ 1 /r-fl — 1, provided that every edge of H has
at least €| V(H)| points for some 0 <€ < | (see Exercise 15.8).

The following simple assertion will help us in deciding whether a given
hypergraph has low VC-dimension.

Lemma 15.8. Let H be a hypergraph of VC-dimension d, and let
w(E\, ..., Ey) be a set-theoretic formula of k variables (using U, N, —). If every
edge E’ of a hypergraph H' can be expressed as

E' =@(E\,...,E)  for suitable E; e E(H),
then

VC-dim (H’) < 2dklog (2dk).

Proof. Let A be a d’-element subset of V(H’) = V(H), which is shattered
in H’. By Theorem 15.4,

HEN A|E e E(H)}| < i“(‘f)
i=0

Using the assumption on H’, this yields
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d
’ d’ *
2 _|[{E'NA|E e E(H’)}US(Z( Sl
i=0
Comparing the two sides of this inequality, we obtain that d” < 2dklog (2dk),
as required. 0

Ding, Seymour, and Winkler (1994) have introduced another parameter of
a hypergraph, closely related to its VC-dimension. They defined A(H) as the
largest integer / such that one can choose [ edges E|,E,,...,E; € E(H) with
the property that for any 1 < i < j < [, there is a vertex x; € E; ) E; that
does not belong to any other E, (g # i,j). It is easy to see that VC-dim (H) <
(MHZ) il ) for every hypergraph H. Combining Corollary 15.6 with Ramsey’s

theorem (Theorem 9.13), one can establish the following result.

Theorem 15.9 (Ding et al., 1994). For any hypergraph H,

NH) +v(H) ) 2

7(H) < 6M(H) (\(H) + v(H))( e

At the beginning of this chapter we pointed out that in general it is impossible
to bound 7 from above by any function of ». Gyarfas and Lehel (1983, 1985)
initiated the investigation of certain classes of hypergraphs for which such
functions exist. Theorem 15.9 provides a sufficient condition for a family of
hypergraphs to have this property. It implies that if there exists a constant K
such that A\(H) < K for all members of a family, then 7 can be bounded from
above by a polynomial of ». For various geometric consequences of this fact,
see Pach (1995).

RANGE SPACES AND &-NETS

Haussler and Welzl (1987) were the first to recognize the relevance of the
above machinery to geometric problems, and in fact they formulated and proved
the first version of Theorem 15.5, too. It seems to capture the essence of the
so-called random (or probabilistic) method in a large variety of geometric
applications. This ready-to-use kit will save us a lot of time (and space)
in situations where otherwise we would go through lengthy but routine
calculations. However, the main significance of these ideas is that they shed
some light on the general transversal problem. The transversal number is a
global parameter of a set system. The results in the preceding section show
that in any measure space of total measure 1, any system of large measurable
sets admits a relatively small transversal, provided that its local behavior is nice
(i.e., its VC-dimension is bounded).



