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Abstract. The crossing number of a graph G is the minimum number
of crossings in a drawing of G. The determination of the crossing number
is an NP-complete problem. We present two general lower bounds for the
crossing number, and survey their applications and generalizations.

1 Preliminaries

A drawing of a graph G is a representation of G in the plane such that its
vertices are represented by distinct points and its edges by simple continuous
arcs connecting the corresponding point pairs. If it is clear whether we talk about
the “abstract” graph G or its planar representation, these points and arcs will
also be called vertices and edges, respectively. For simplicity, we assume that in
a drawing (a) no edge passes through any vertex other than its endpoints, (b)
no two edges touch each other (i.e., if two edges have a common interior point,
then at this point they properly cross each other), and (c) no three edges cross
at the same point.

Turán [26] defined the crossing number of G, cr(G), as the smallest number
of edge crossings in any drawing of G. Clearly, cr(G) = 0 if and only if G
is planar. According to a famous conjecture of Zarankiewicz [10], the crossing
number of the complete graph Kn,m with n and m vertices in its classes satisfies

cr(Kn,m) = bm

2
c · bm − 1

2
c · bn

2
c · bn − 1

2
c.

Kleitman [11] verified this conjecture in the special case min{m, n} ≤ 6, and
Woodall [29] for min{m, n} = 7.

Garey and Johnson [9] proved that the determination of the crossing number
is an NP-complete problem. In the past twenty years, it turned out that crossing
numbers play an important role in various fields of discrete and computational
geometry, and they can also be used, e.g.,to obtain lower bounds on the chip
area required for the VLSI circuit layout of a graph [12]. In this lecture, first we
recall two important general results for crossing numbers, and outline some of
their applications. Next we describe some recent extensions and generalizations
of these theorems. After that we introduce three alternative notions of crossing
number, and analyze their relationship. Finally, we state some tantalizing open
problems.
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2 Two Important Bounds and Their Applications

The following result was proved by Ajtai–Chvátal–Newborn–Szemerédi and, in-
dependently, by Leighton. The best known constant, 1/33.75, in the theorem is
due to Pach and Tóth.

Theorem 2.1. [2],[12],[19] For any graph G with n vertices and e ≥ 7.5n edges,

we have

cr(G) ≥ 1

33.75

e3

n2
,

and this estimate is tight up to a constant factor.

To prove the tightness, let n � e � n2, and consider a graph, whose vertex
set is a b√nc by b√nc piece of the integer grid in the plane, and connect two
gridpoints, p and q, by an edge if and only if their distance satisfies

|p − q| ≤
√

2

π
· e

n
.

It is not hard to show that the crossing number of this graph is at most 0.06e3/n2.
To state the second general bound on the crossing number, we need a defini-

tion. Let G be a graph with vertex set V (G) and edge set E(G). The bisection

width of G, b(G), is defined as the minimum number of edges, whose removal
splits the graph into two roughly equal subgraphs. More precisely, b(G) is the
minimum number of edges running between V1 and V2, over all partitions of the
vertex set of G into two disjoint parts V1 ∪ V2 such that |V1|, |V2| ≥ |V (G)|/3.

Leighton observed that there is an intimate relationship between the bisection
width and the crossing number of a graph [13], which is based on the Lipton–
Tarjan separator theorem for planar graphs [14]. The following version of this
relationship was obtained by Pach, Shahrokhi, and Szegedy.

Theorem 2.2. [12],[16] Let G be a graph of n vertices with degrees d1, d2, . . . , dn.

Then

b(G) ≤ 10
√

cr(G) + 2

√

√

√

√

n
∑

i=1

d2
i .

We briefly mention three applications of Theorem 2.1 and three applications
of Theorem 2.2. The first two applications are due to L. Székely, the third to T.
Dey.

Applications. 2.1.a. Szemerédi–Trotter theorem. [25], [5],[15] Given n points
and m lines in the Euclidean plane, the number of incidences between them is
at most 2.57m2/3n2/3 + m + n.

2.1.b. Spencer–Szemerédi–Trotter theorem. [24] The number of unit distances
determined by n points in the plane is O(n4/3).

A family Γ of curves in the plane is said to have d degrees of freedom, if there
exists an integer s such that
(a) no two curves in Γ have more than s points in common, and



(b) for any d points, there are at most s curves in Γ passing through all of them.

Pach and Sharir [17] applied Theorem 2.1 to obtain the following common
generalization of the last two theorems (2.1.a-b). Let Γ be a family of curves in
the plane with d degrees of freedom. Then the maximum number of incidences
between n points in the plane and m elements of Γ is

O(nd/(2d−1)m(2d−2)/(2d−1) + n + m).

2.1.c. Dey theorem. [6] Given a set of 2n points in the plane, a line connecting
two of them is called a halving line if there are precisely n− 1 points on both of
its sides. The number of halving lines for a set of 2n points in general position
in the plane is O(n4/3).

2.2.a. For a random graph G with n vertices and e ≥ 4n edges, we almost surely
have cr(G) ≥ ce2, for some positive constant c.

2.2.b. [16],[1] Let G be any (so-called geometric) graph with n vertices, drawn
in the plane so that its edges are represented by straight-line segments. Suppose
that G has no k pairwise disjoint edges (k > 2). Then there exists a constant
ck depending only on k such that G has at most ckn log2k−6 n edges. Valtr [28]
has recently reduced the exponent 2k− 6 to 1, for every k > 3, but it is possible
that one can completely get rid of the logarithmic factor.

2.2.c. [21] For every n, there exist a planar graph Gn of n vertices and an
assignment of locations (distinct points) for the vertices such that in any planar
drawing of Gn with the property that each vertex is mapped into the point
assigned to it and each edge is represented by a polygonal path, there are at
least n/100 edges consisting of at least n/100 segments.

3 Extensions and Generalizations

Let K(n, e) denote the minimum crossing number of a graph G with n vertices
and e edges. That is,

K(n, e) = min{cr(G) : |V (G)| = n, |E(G)| = e}.

It follows from Theorem 2.1 that, for e ≥ 4n, K(n, e)n2/e3 is bounded from
below and from above by two positive constants. Erdős and Guy [7] conjectured
that if e � n (i.e., if limn→∞ f(n)/g(n) = ∞), then lim K(n, e)n2/e3 exists.
This conjecture is almost true.

Theorem 3.1. [18] If n � e � n2, then

lim
n→∞

K(n, e)

e3/n2
= K0

exists.



Analogously, for every g ≥ 0, one can define a new crossing number, crg(G),
as the minimum number of crossings in any drawing of G on the torus with g
holes. Let

Kg(n, e) = min{crg(G) : |V (G)| = n, |E(G)| = e}.

Theorem 3.2. [18] For fixed g ≥ 0, if n � e � n2, then

lim
n→∞

K(n, e)

e3/n2
= Kg

exists. Moreover, Kg = K0 for every g.

Miklós Simonovits suggested that much stronger estimates may be valid for
the crossing number(s), if we restrict our attention to some special classes of
graphs, e.g., to graphs not containing some fixed, so-called forbidden subgraph.
It turns out that this is indeed the case.

A graph property P is said to be monotone if for any graph G satisfying P ,
every subgraph of G also satisfies P . For any monotone property P , let ex(n,P)
denote the maximum number of edges that a graph of n vertices can have if
it satisfies P . In the special case when P is the property that the graph does
not contain a subgraph isomorphic to a fixed forbidden subgraph H , we write
ex(n, H) for ex(n,P).

Theorem 3.3. [18] Let P be a monotone graph property with ex(n,P) = O(n1+α)
for some α > 0.

Then there exist two constants c, c′ > 0 such that the crossing number of any

graph G with property P, which has n vertices and e ≥ cn log2 n edges, satisfies

cr(G) ≥ c′
e2+1/α

n1+1/α
.

This bound is asymptotically tight, up to a constant factor.

In some interesting special cases when we know the precise order of magnitude
of the function ex(n,P), we obtain some slightly stronger results. The girth of a
graph is the length of its shortest cycle.

Theorem 3.4. [18] Let G be a graph with n vertices and e ≥ 4n edges, whose

girth is larger than 2r.
Then the crossing number of G satisfies

cr(G) ≥ cr
er+2

nr+1
,

where cr > 0 is a suitable constant. For r = 2, 3, and 5, these bounds are

asymptotically tight, up to a constant factor.

Theorem 3.5. Let G be a graph with n vertices and e ≥ 4n edges, which does

not contain a complete bipartite subgraph Kr,s with r and s vertices in its classes,

s ≥ r.



Then the crossing number of G satisfies

cr(G) ≥ cr,s
e3+1/(r−1)

n2+1/(r−1)
,

where cr,s > 0 is a suitable constant. These bounds are tight up to a constant

factor, whenever s > (r − 1)!.

To see that the order of magnitude of the estimate in Theorem 3.5 cannot be
improved, for r = s = 2 (say), take a K2,2-free graph H with (2e/n)2 vertices
of degree 2e/n. Let G be the union of n3/(4e2) pairwise disjoint components

isomorphic to H . Using the trivial estimate cr(H) ≤
(

|E(H)|
2

)

, we obtain that

cr(G) ≤ n3

4e2
cr(H) ≤ n3

4e2

(

4e3/n3

2

)

≤ 2e4

n3
,

as required.
The basic tool for the proof of most of the results in this section is Theorem

2.2, and its generalization to tori.

4 Three Other Crossing Numbers

We define three variants of the notion of crossing number.

(1) The rectilinear crossing number, lin-cr(G), of a graph G is the minimum
number of crossings in a drawing of G, in which every edge is represented by a
straight-line segment.

(2) The pairwise crossing number of G, pair-cr(G), is the minimum number of
crossing pairs of edges over all drawings of G. (Here the edges can be represented
by arbitrary continuous curves, so that two edges may cross more than once, but
every pair of edges can contribute at most one to pair-cr(G).)

(3) The odd-crossing number of G, odd-cr(G), is the minimum number of those
pairs of edges which cross an odd number of times, over all drawings of G.

It readily follows from the definitions that

odd-cr(G) ≤ pair-cr(G) ≤ cr(G) ≤ lin-cr(G).

Bienstock and Dean [3] exhibited a series of graphs with crossing number 4,
whose rectilinear crossing numbers are arbitrary large. However, we cannot rule
out the possibility that

odd-cr(G) = pair-cr(G) = cr(G),

for every graph G. This is perhaps the most exciting open problem in the area.
The determination of the odd-crossing number can be rephrased as a purely

combinatorial problem, thus the possible coincidence of the above three crossing
numbers would offer a spark of hope that there exists an efficient approximation
algorithm for computing their value.



According to a remarkable theorem of Hanani (alias Chojnacki) [4] and Tutte
[27], if a graph G can be drawn in the plane so that any pair of its edges cross
an even number of times, then it can also be drawn without any crossing. In
other words, odd-cr(G) = 0 implies that cr(G) = 0. Note that in this case, by
a theorem of Fáry [8], we also have that lin-cr(G) = 0.

The main difficulty in this problem is that a graph has so many essentially
different drawings that the computation of any of the above crossing numbers,
for a graph of only 15 vertices, appears to be a hopelessly difficult task even for
a very fast computer [22].

Theorem 4.1. [9],[20] Given a graph G and an integer K, it is an NP-complete

problem to decide whether any of the above crossing numbers of G is at most K.

All we can show is that the parameters cr(G), pair-cr(G), and odd-cr(G),
are not completely unrelated.

Theorem 4.2. [20] For any graph G, we have

cr(G) ≤ 2(odd-cr(G))2.

The proof of the last statement is based on the following sharpening of the
Hanani–Tutte Theorem.

Theorem 4.3. [20] An arbitrary drawing of any graph in the plane can be re-

drawn in such a way that no edge, which originally crossed every other edge an

even number of times, would participate in any crossing.
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nals of Discrete Mathematics 12 (1982), 9–12.
3. D. Bienstock and N. Dean: Bounds for rectilinear crossing numbers, Journal of

Graph Theory 17 (1993), 333–348.
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