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ABSTRACT. Using the Upper Bound Theorem for polytopes and Gale trans-
forms, Uli Wagner and Emo Welzl have recently proved the following re-
markable theorem. For any absolutely continuous probability distribution
in d-space, the probability that the convex hull of d + 1 randomly and in-
dependently selected points contains the origin is at most 1/2¢, and this
bound is tight. We present two very short proofs for the planar version of
this result, and discuss some related questions.

1. INTRODUCTION

Pick three points on the perimeter of the unit circle around the origin
O, independently with uniform distribution. What is the probability that
their convex hull contains O7 There is a short and sweet argument that goes
back at least to the sixties (see Wendel [3]), which shows that the answer
is 1/4. For any point z on the circle, let —z denote the point diametrically
opposite to z. For any distinct points 1, z9, and x3 on the circle, consider the
unordered triples T' = {e11, €922, 323}, where each ¢; = +1 or —1. Observe
that out of these 8 triples precisely 2 induce a triangle which contains the
origin in its interior, and the claim readily follows.

In exactly the same way one can argue that the probability that the
simplex induced by d + 1 randomly, independently, and uniformly selected
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points on the surface of the unit sphere in d-space contains the origin in its
interior is 1/2%. Moreover, this statement remains true for any absolutely
continuous distribution symmetric about the origin, i.e., when the measure
of any half-space bounded by a hyperplane through the origin is precisely
1/2.

By introducing an ingenious continuous analogue of the Upper Bound
Theorem (cf. [4]), Uli Wagner and Emo Welzl have proved that for every
absolutely continuous distribution in d-space, not necessarily symmetric to
the origin, the probability defined above cannot exceed 1/2¢. They raised
the question whether their theorem can be established by a simpler and
“more illuminating” direct argument, at least for d = 2. In the following
two sections, we describe two such arguments. Both methods solve some
discrete variants of the problem, from where the Wagner-Welzl result follows
by passing to the limit.

2. DISCRETE DISTRIBUTIONS
ON A REGULAR 7-GON

Let n > 3 be an odd integer, and let V' = {v1,v9,...,v,} be the vertex set
of a regular n-gon in the plane, centered at O, where the indices are taken
modulo n. Assume that the elements of V are numbered in such a way that
the angle v;0v;41 is equal to (1 — 1/n)7 for every 1 <i < n.

Let P be a discrete probability distribution on V', for which P[v;] = p; > 0
and ), p; = 1. The set of those indices 7 for which p; # 0 is called the support
of P and is denoted by supp(P).

Theorem 1. The probability that the triangle determined by three randomly
and independently selected points of V' contains O in its interior is at most
% (1 — n—12) The maximum is attained if and only if P is the uniform distri-
bution Py.

Proof: The probability we have to maximize is 6 times S(P) = Z{i’j,k} DiPjPk;
where the sum is taken over all triples {4, j, k} such that the triangle v;v;vy
contains O in its interior.

Fix a distribution P for which S(P) attains its maximum, and assume
that supp(P) is also maximal under this condition. We are going to show
that S(P) does not exceed S(F).

Observe that there are no two consecutive indices i + 1,7 + 2 & supp(P).
Indeed, if i € supp(P) and i+1,:+2 ¢ supp(P), then choose a small constant
¢ > 0. For the distribution P’ defined by

p; i #4042,
(1) Ply]=pj=1{ pi—e ifj=i,
pivate Hj=1i+2
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we have S(P') = S(P), and the support of P’ is larger than that of P. This
contradicts the maximality of P.

Since n is odd, it follows that there are two consecutive indices 4,7 + 1 €
supp(P). We separate two cases depending on whether the support of P is
full or not.

CASE A: supp(P) # {1,2,...,n}.

There exist (not necessarily disjoint) indices ¢ and & such that
{i}u{i+1,9+3,i+5,...,k} U{k+ 1} C supp(P),

and {i +2,i+4,...,k — 1} & supp(P).
For the distribution P’ defined in (1) we have

S(P) — S(P") = pis1€[(Pk+1 + Prt3 + --- +pic1)—

(Pit3 + Pits +Dixr+ ... +pi—€)] >0,

whenever ¢ > 0 is sufficiently small. This yields
Pk+1+ Pk+3 + ... +Pi—1 2 Piv3 + Pivs + Piv7 + ...+ i
Exchanging the roles of ¢ and k + 1, we obtain, by symmetry, that
Pk+2 + Pkta + ...+ Pi 2 Prt1 + P43 + Phts + .-+ Pr—2.
Comparing the last two inequalities, it follows that
Pit1 = Pi43 = Pit5 = ... = Pk = 0,

contradicting our assumption that e.g. i + 1 € supp(P).

CAsE B: supp(P) ={1,2,...,n}.

Using the same argument as before, now we obtain that for every 4,
Pit2 +Pita + ... +Ppi—1 = Pit3 +Pits + ...+ pi
Substituting ¢ with ¢ 4+ 1, we obtain

Pi+3 + Pivs + ... +Pi = Pira + Dive + ... + Dit1.

Therefore, p;11 = pit+2 holds for every .
The discussion of the case of equality is left to the reader. O
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3. COUNTING ALTERNATING SUBSEQUENCES OF LENGTH 3

It was just a matter of convenience that we assumed that V' = {v1,ve,...,v,}
is the vertex set of a regular n-gon centered at O. The proof of Theorem 1
applies to every set V with the property that any line connecting O with an
element v; € V has precisely (n — 1)/2 points of V' on both of its sides. In
other words, V has the antipodality property with respect to O: if we draw
n rays from O through all elements of V, for any two consecutive rays there
will be a third one lying in the cone induced by their reflections about O.
Theorem 2. Letn be an odd positive integer, and let V be a set of n points in
the plane such that VU{O} is in general position and the number of triangles
induced by V' that contain O in their interiors, is as large as possible. Then
V' has the antipodality property with respect to O. Conversely, every set V
which has the antipodality property with respect to O, mazimizes the number
of triangles containing O in their interiors.

Proof: Fix an z—y coordinate system in the plane with O as the origin,
and assume without loss of generality that no point of V' = {vy,v9,...,v,}
lies on the z-axis. Let 0 < a; < 7 be the counter-clockwise angle from the z-
axis to the line Ov;. Suppose without loss of generality a; < as < ... < ay,.
For every i = 1,2,...,n, let sign(i) = + if the y-coordinate of v; is positive,
and let sign(i) = — otherwise.

Notice that, for every ¢ < j < k, the triangle v;v;v; contains O in its
interior if and only if (sign(i),sign(y),sign(k)) is an alternating sequence,
ie, (+,—,+) or (—,+,—).

If we rotate our coordinate system until after the z-axis passes through the
first point of V, the sequence (sign(1), sign(2), .. .,sign(n)) changes according
to the following rule: the first or the last element will change its sign and
move to the other end of sequence. We call this operation shifting.

Obviously, the number of alternating subsequences of length 3 does not
change during shifting.

If S = (sign(1),sign(2),...,sign(n)) itself is an alternating sequence and
n is odd, then every other sequence obtained from S by shifting is also
alternating. Note that S is an alternating sequence if and only if V' has the
antipodality property with respect to O.

Thus, it is sufficient to verify the following

Lemma. Let n be a (not necessarily odd) positive integer, and let S =
(s1,82,---,8n) be a sequence of + and — signs, for which the number of
alternating subsequences of length 3 is as large as possible.

Then the mazimum is

Fn) = { % if n is odd,

—or— if n is even.
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For odd n, this mazimum is attained if and only if S is an alternating se-
quence. For even n, the mazimum is attained if and only if in every string of
consecutive members of S the number of plus signs and the number of minus
signs differ by at most 2.

It remains to prove the Lemma.

Let n > 3, and assume that we have already established the assertion for
all sequences whose length is smaller than n. By shifting, if necessary, we
can achieve that s;1 = s, = +. Deleting s1 and s, from S, we are left with a
sequence S’ consisting of p plus and m minus signs, p +m = n — 2. Clearly,
f(S), the number of alternating subsequences of length 3 in S, satisfies

fS)=fS"+m+pm< fln—2)+ (p+1)m <

Fln—2)+ "5 T = (),

as required.

If n is odd, then equality can hold only if S’ is an alternating subsequence
of length n — 2, and p + 1 = m. Therefore, S’ must start and end with
minus signs, and S must be alternating, too. One can also check that the
cases when equality holds for even n are precisely those characterized in the
theorem. g

4. OPEN PROBLEMS

Both Theorem 1 and Theorem 2 immediately imply the planar case of the
result of Wagner and Welzl mentioned in the abstract.

Corollary. [1] For any absolutely continuous probability distribution in the
plane, the probability that a triangle induced by 3 randomly and independently
selected points contains O in its interior is at most 1/4. Equality holds here
if the measure of any half-plane bounded by a line passing through O is 1/2.

Problem 1. (Unicity) Is it possible to argue, based on the discrete variants
of the result, that all distributions for which the bound 1/4 is attained in the
Corollary satisfy the condition that the measure of every half-plane bounded
by a line passing through O is 1/27

Problem 2. Can one extend the above arguments to higher dimensions?

In order to generalize our proofs to 3-space, one should solve the following
planar problem. Given n points in general position in the plane, colored red
and blue. We want to maximize the number of multi-colored 4-tuples with
the property that the convex hull of its red elements and the convex hull of
its blue elements have at least one point in common. In particular, we want
to show that when the maximum is attained, the number of red and blue
elements are roughly the same.
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