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ABSTRACT
Let C be a collection of n compact convex sets in the plane,
such that the boundaries of any pair of sets in C intersect
in at most s points, for some constant s. We show that the
maximum number of regular vertices (intersection points of
two boundaries that intersect twice) on the boundary of the

union U of C is1 O∗(n4/3), which improves earlier bounds
due to Aronov et al. [4]. The bound is nearly tight in the
worst case.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithm
and Problem Complexity Nonnumerical Algorithms and Prob-
lems [geometrical problems and computations]

General Terms
Theory
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1. INTRODUCTION
Let C be a collection of n compact convex sets in the

plane as in the abstract. Let U denote the union of C. If

∗Work by János Pach and Micha Sharir was supported by
NSF Grant CCF-05-14079, and by a grant from the U.S.-
Israeli Binational Science Foundation. Work by Esther Ezra
and Micha Sharir was supported by grant 155/05 from
the Israel Science Fund and by the Hermann Minkowski–
MINERVA Center for Geometry at Tel Aviv University.
1In this paper, a bound of the form O∗(f(n)) means that
the actual bound is Cεf(n) · nε, for any ε > 0, where Cε is
a constant that depends on ε (and generally tends to ∞ as
ε decreases to 0).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’07, June 6–8, 2007, Gyeongju, South Korea.
Copyright 2007 ACM 978-1-59593-705-6/07/0006 ...$5.00.

the boundaries of a pair of sets in C intersect exactly twice,
we refer to their two intersection points as regular intersec-
tions; all other boundary intersections are called irregular.
Several recent papers have considered the problem of ob-
taining sharp bounds on the number of regular intersection
points that can appear on the boundary of the union U . In
the simplest instance of this problem, we assume that the
boundaries of any pair of sets in C intersect at most twice,
but make no other assumption on the shape of these sets;
we then refer to C as a collection of pseudo-disks. In an
early paper [10], Kedem et al. show that in this case the
boundary of the union contains at most 6n−12 intersection
points, and this bound is tight in the worst case. Pach and
Sharir [13] have shown that, for the special case where C con-
sists of convex sets, one always has R ≤ 2I +6n− 12, where
R (resp., I) denotes the number of regular (resp., irregular)
points on ∂U , thus generalizing the result of Kedem et al.,
in which I = 0.

The bound of Pach and Sharir is tight in the worst case,
but since I can be large, it does not provide a good “ab-
solute” upper bound (a bound that depends only on n) on
R. In fact, I can be Ω(n2) in the worst case, and there
exist constructions in which both I and R are Θ(n2) (see
Figure 1(a)). However, in these lower bound constructions,
some pairs of the boundaries of the sets in C intersect in an
arbitrarily large number of points (that is, the assumption
in the abstract does not hold). It is therefore interesting
to seek bounds on R that are independent of I and depend
only on n, in cases where each pair of boundaries intersect
in a constant number of points. This has been done by
Aronov et al. [4]. Under similar assumptions as in the ab-

stract, they obtained the upper bound R = O∗(n3/2). For
the more general case, where the sets in C are not necessar-
ily convex, they show the existence of a positive constant δ,
which depends only on s, so that R = O(n2−δ).

Our result. In this paper we consider the case where C satis-
fies the assumptions in the abstract, and derive an improved
bound on R. Specifically, we show that R = O∗(n4/3). This
improves the first bound of [4]. Moreover, this bound is
nearly tight in the worst case, since one can easily construct
n rectangles and disks which generate Θ(n4/3) regular ver-
tices on the boundary of their union; see [13] for details.

Besides being an intriguing problem in itself, which is fi-
nally fully resolved (for the convex case), it arises in appli-
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Figure 1: (a) A construction with R = Θ(n2). (b) A charging

scheme for bounding the complexity of the union. The vertex v,

generated by the intersection boundaries of C and C ′, is charged

to the block of the four vertices w1, . . . , w4, appearing along the

boundary portion γ of C encountered when tracing ∂C from v as

depicted.

cations that seek bounds on the complexity of the union of
geometric objects in two and three dimensions, such as robot
motion planning [8] and solid modeling. One technique for
analyzing this complexity is via a charging scheme, where
we start from a vertex v of the union, and follow one of the
two incident boundaries, into the interior of the union, hop-
ing to collect at least k vertices of the arrangement of the
boundaries before reaching the union boundary again, where
k is some prescribed parameter; see Figure 1(b) and [15, 16].
Such a charging scheme will fail if we return to the union
boundary before collecting enough vertices; the worst case of
which is when we return immediately to the union boundary.
In many cases this situation can be handled by “blaming”
it to a regular vertex on the union boundary, and having a
sharp bound on the number of such vertices is then crucial
for the success of the scheme.

2. ANALYSIS
Let C be a collection of n compact convex sets in the

plane, each pair of whose boundaries intersect in at most s
points, for some constant s. For each C ∈ C, the segment
connecting the leftmost and rightmost points of C is called
the spine of C; we assume (without loss of generality) that
it is unique, and denote it by σC (note that σC is contained
in C, due to its convexity).

As already defined, a pair C, C ′ of sets in C are said to
intersect regularly if |∂C∩∂C ′| = 2. Each of these two inter-
section points is called a regular vertex of the arrangement
A(C) of (the boundary curves of the sets in) C.

We establish an upper bound on the maximum number of
regular vertices on the boundary of the union U of C, which
improves the earlier bound O∗(n3/2), due to Aronov et al. [4].
Specifically, we show

Theorem 2.1. Let C be a set of n compact convex sets as
above. Then the number of regular vertices on the boundary

of the union of C is at most O∗
“

n4/3
”

, when the small hid-

den factor in this bound depends on s. This bound is nearly
worst-case tight, that is, there are constructions that yield

Ω
“

n4/3
”

regular vertices that appear on the boundary of the

union (already for s = 4).
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Figure 2: Demonstration of the transformation rule. (a) ∂C

creates with each of the three sets C1, C2, C3 regular vertices on

the boundary of the union. (b) Each of C1, C2, C3 is shrunk by

the chords connecting its intersections with ∂C. (c) Shrinking C by

similar shortcuts; wz is replaced by a nearby chord wz′ to make C

and C3 touch at a single point. The shaded region is a new connected

component of the complement of the union (a new “hole”).

Overview of the proof. We first assume that the given sets
in C are in general position. The proof proceeds through the
following stages. We first apply the transformation of [4] to
the collection C of convex sets. The transformed sets satisfy
the following properties (see [4, Lemma 1] and Figure 2 for
further details): (i) They are convex. (ii) Any two bound-
aries intersect at most s times. (iii) Any two sets C, C ′ ∈ C
that intersected regularly (before the transformation) either
become disjoint or touch at a single point. More precisely, if
C, C′ intersected regularly with at least one point of inter-
section of their boundaries on ∂U , the transformed sets are
openly disjoint and touch each other at a point on ∂U . If
they intersected regularly without creating vertices on ∂U ,
they are now disjoint. To simplify the notation, we let C
denote from now the set of the transformed regions.

Note that the spines of the transformed sets may be dif-
ferent from those of the original sets. Note also that, after
this transformation, any regular vertex on the boundary of
the union must be formed by a pair of sets whose spines are
disjoint.

We then apply a decomposition scheme that consists of
two phases. The first phase represents all pairs of sets of C
with disjoint spines, so that one of these spines lies below
the other (see below for a precise definition), as the disjoint
union of complete bipartite graphs, whose overall complexity
is sufficiently small, in a sense to be made precise below.

We then fix one such complete bipartite subgraph A×B,
where the spines of the sets in A all lie below those of the
sets of B, and analyze the number of regular vertices that
it contributes to the union boundary. A crucial property
of such a graph is that each of these regular vertices must
lie either on the upper envelope of the top boundaries of
sets whose spines are in A, or on the lower envelope of the
bottom boundaries of sets whose spines are in B. We then
form, say, the upper envelope E+

A of the top boundaries of
the sets in A, and decompose it into maximal connected
arcs, each contained in the boundary of a single set, and
having disjoint x-spans.



The fact that regular vertices are formed by touching
pairs, suggests a second decomposition phase, in which we
transform A × B into a union of complete bipartite sub-
graphs, such that each such subgraph A′ × B′ is associated
with some vertical strip Σ, and each spine σ of a set in B′

lies, within the strip Σ, above every arc δ whose incident
set belongs to A′. It is then easy to show that the number
of regular vertices of the union, induced by pairs of sets in
A′ × B′, is only nearly-linear in |A′| + |B′|.

The second decomposition phase is somewhat involved. It
consists of decomposition steps that alternate between the
primal and dual planes, where each step is based on a cut-
ting of a certain line arrangement. While the dual decom-
position is more “conventional”, the primal one is trickier,
and requires careful analysis of the way in which the arcs δ
interact with the spines from the other set.

Finally, using these bounds, we put everything together
and obtain the bound asserted in the theorem.

Transforming the sets. We begin by applying to C the
transformation of Aronov et al. [4], as explained in the overview.
We continue to denote by C the collection of the shrunk sets.

Let C and C′ be two members of C that touch each other
at a point that lies on ∂U . Clearly, as already noted, σC and
σC′ are disjoint, and one of them, say, σC , lies below the
other, which means that (i) their x-spans have nonempty
intersection J ; (ii) σC lies below σC′ at each x ∈ J .

The first bi-clique decomposition. We collect all pairs
of spines so that one of them lies below the other, as the
disjoint union of complete bipartite graphs (bi-cliques), so

that the overall size of their vertex sets is O∗(n4/3). More
precisely, the following stronger property holds.

Lemma 2.2. Given a collection C as above, let G be the
graph whose vertices are the regions in C, and whose edges
connect pairs of regions (C, C ′), such that σC lies below σC′ .
Then there exists a decomposition G =

S

i Ai ×Bi into pair-
wise edge-disjoint bi-cliques, such that

X

i

“

|Ai|2/3|Bi|2/3 + |Ai| + |Bi|
”

= O∗(n4/3). (1)

Proof: This is a standard result in “batched” range search-
ing, and can be found, e.g., in [1, 2]; see also [12]. The proof
is given below for the sake of completeness.

Let σ = pq, σ′ = p′q′ be a pair of spines such that σ lies be-
low σ′. This relationship can be expressed as the disjunction
of a constant number of conjunctions of above/below rela-
tionships, over the possible x-orders of p, q, p′ and q′, where
each atomic relationship asserts that an endpoint of one
spine lies above or below the line containing the other spine.
For example, if the x-order of the endpoints is p, p′, q, q′,
then we require that p′ lie above the line ` containing σ and
that q lie below the line `′ containing σ′; see Figure 3(a)–(c).
For simplicity of exposition, we describe the construction
only for the subgraph of G that consists of pairs of regions
with this property; all other subcases are handled in a fully
symmetric manner.

We apply a multi-level decomposition scheme, where each
level produces a decomposition into bi-cliques that satisfy
some of the constraints, and each of them is passed to the
next level to enforce additional constraints. At the two top
levels, we produce a collection of pairwise edge-disjoint bi-
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Figure 3: (a) The two spines σ, σ′ are disjoint and σ lies below

σ′. (b) The left endpoint p′ of σ′ lies above the line ` containing σ,

and (c) the right endpoint q of σ lies below the line `′ containing σ′.

cliques, such that, for each of these graphs A1 × B1, for
each spine σ = pq ∈ A1 and for each spine σ′ = p′q′ ∈ B1,
the x-order of the endpoints is p, p′, q, q′, and such that the
union of these graphs gives all such pairs of spines. This
is easily done using a 2-dimensional range tree construction
[1, 7]. The sum of the vertex sets of the resulting subgraphs
is O(n log2 n). Moreover, (1) is easily seen to hold for the
decomposition thus far.

The next level enforces, for each resulting subgraph A1 ×
B1, the condition that p′ lie above the line ` containing σ, for
σ ∈ A1 and p′ the left endpoint of a spine σ′ ∈ B1. Put m1 =
|A1| and n1 = |B1|. For this we choose a sufficiently large
constant parameter r, and construct a (1/r)-cutting [11] of
the arrangement of the lines that contain the spines of A1.
We obtain O(r2) cells, each of which is crossed by at most
m1/r lines, and contains at most n1/r2 left endpoints of
spines of B1. (The latter property can be enforced by further
splitting some cells of the cutting; also, assuming general
position, we can construct the cutting so that no endpoint
of any spine lies on the boundary of any cutting cell.) For
each cell ∆, we form the bi-clique A′

2(∆) × B2(∆), where
B2(∆) consists of all spines whose left endpoints are in ∆,
and where A′

2(∆) consists of all spines whose supporting
lines pass completely below ∆. These graphs are passed to
the next level of the structure. We then consider, for each
cell ∆, the set A2(∆) of spines of A1 that cross ∆, and the set
B2(∆) as defined above. We pass to the dual plane, where
the lines of the spines in A2(∆) are mapped to points and
the left endpoints of spines in B2(∆) are mapped to lines.
We construct a (1/r)-cutting of the arrangement of these
dual lines, obtaining O(r2) cells, each of which is crossed
by at most |B2(∆)|/r ≤ n1/r3 lines and contains at most
|A2(∆)|/r2 ≤ m1/r3 points. As above, we construct, for
each cell of the cutting, a bi-clique from the dual points in



the cell and the lines that pass fully above the cell, and pass
all these graphs to the next level. We are left with O(r4)
subproblems, each involving at most m1/r3 spines of A1 and
at most n1/r3 spines of B1, which we process recursively. We
continue to process each subproblem as above, going back to
the primal plane, and keep alternating in this manner, until
we reach subproblems in which either m2

1 < n1, or n2
1 < m1.

In the former (resp., latter) case, we continue the recursive
construction only in the primal (resp., dual) plane, and stop
as soon as one of m1, n1 becomes smaller than r, in which
case we produce a collection of singleton bi-cliques.

Suppose first that
√

m1 ≤ n1 ≤ m2
1. We show below that,

for any fixed initial subgraph A1×B1, the resulting bi-clique
decomposition {A′

2(∆) × B2(∆)}∆, over all cells ∆ of all the
cuttings, satisfies
X

∆

“

|A′
2(∆)|2/3|B2(∆)|2/3 + |A′

2(∆)| + |B2(∆)|
”

= (2)

O∗
“

|A1|2/3|B1|2/3 + |A1| + |B1|
”

,

and the same holds for the corresponding decompositions in
the dual spaces.

Indeed, let us consider only the primal decompositions,
since the dual ones are handled in exactly the same man-
ner. Since r is taken to be a constant, the sum in (2), over
the graphs produced at the top level of the recursion, is at

most C(r)
“

|A1|2/3|B1|2/3 + |A1| + |B1|
”

, where C(r) is a

constant that depends on r. In the next level, we have at
most C′r4 subproblems, for some absolute constant C ′ > 0,
each involving at most |A1|/r3 spines of A1 and at most
|B1|/r3 spines of B1. The overall contribution to the sum
in (2) by the bi-cliques produced at this level is at most

C′r4 · C(r)

 

„

|A1|
r3

«2/3 „ |B1|
r3

«2/3

+
|A1|
r3

+
|B1|
r3

!

=

C′C(r)
“

|A1|2/3|B1|2/3 + |A1|r + |B1|r
”

.

Continuing in this manner, the contribution to the sum in
(2) at the j-th level of the recursion is at most

(C′)jr4j · C(r)

„ |A1|2/3

r2j

|B1|2/3

r2j
+

|A1|
r3j

+
|B1|
r3j

«

=

(C′)jC(r)
“

|A1|2/3|B1|2/3 + |A1|rj + |B1|rj
”

,

where, at the last level, rj = min
n

|A1|
2/3

|B1|
1/3

, |B1|
2/3

|A1|
1/3

o

. Sum-

ming over the logarithmically many levels of the recursion,
we obtain the overall bound O∗(|A1|2/3|B1|2/3).

It remains to consider the cases |A1|2 < |B1|, |B1|2 < |A1|.
It suffices to consider only the first case. Hence, after j levels
of recursion (only in the primal plane), the contribition to
(2) is at most

(C′′)jr2j · C(r)

 

„

|A1|
rj

«2/3 „ |B1|
r2j

«2/3

+
|A1|
rj

+
|B1|
r2j

!

=

(C′′)jC(r)
“

|A1|2/3|B1|2/3 + |A1|rj + |B1|
”

,

where C′′ is another absolute constant, and where the last
j satisfies rj = O(|A1|). Substituting this value, summing

∂−C′

σC2

∂−C2

∂+C1
v

∂+C

σC1

Figure 4: If the vertex v does not lie on either E+
A or E−

B , then

it is “hidden” from E+
A by ∂+C1, and from E−

B by ∂−C2, for some

C1 ∈ A, C2 ∈ B. But then v is contained in (the interior of)

C1 ∪ C2, contrary to the construction.

over all j, and using the inequality |A1|2 ≤ |B1|, we get the
overall bound O∗(|B1|).

Note that, in the preceding case
p

|A1| ≤ |B1| ≤ |A1|2,
when the recursion bottom out, we have sets A′, B′ that
satisfy |A′

1|2 ≤ |B′
1| or |B′

1|2 ≤ |A′
1|, so the same analysis

adds to (2) the terms O∗(|A1|+ |B1|), which thus completes
the proof of the claim.

The final level of the structure enforces, for each resulting
subgraph A2 ×B2, the condition that q lie below the line `′

containing σ′, for σ′ ∈ B2 and q the right endpoint of a spine
σ ∈ A2. This is done in a fully analogous manner to the
preceding step. It is easily checked that, in complete analogy
to the preceding analysis, the bi-clique decomposition {Aα×
Bα}α, that results from the fixed bi-clique A2 ×B2, over all
cells of all the cuttings, satisfies

X

α

“

|Aα|2/3|Bα|2/3 + |Aα| + |Bα|
”

=

O∗
“

|A2|2/3|B2|2/3 + |A2| + |B2|
”

.

Combining this with (2), summing over the entire collec-
tion of these last-stage decompositions, and using the fact
that (1) holds for the initial-level decomposition, we con-
clude that (1) holds for the overall final decomposition, thus
completing the proof of the lemma. 2

Handling a single bi-clique. Fix one of the resulting graphs
A×B. All the spines of the sets in A lie below all the spines
of the sets in B. Put nA = |A| and nB = |B|.

Let v be a regular vertex of the union lying on the top
boundary ∂+C and on the bottom boundary ∂−C′, for two
sets C ∈ A, C′ ∈ B; clearly, this is the only possible sit-
uation. We claim that v lies either on the upper envelope
E+

A of the top boundaries of the sets in A, or on the lower
envelope E−

B of the bottom boundaries of the sets in B. In-
deed, if this were not the case, then v must lie below some
top boundary ∂+C1, for C1 ∈ A, and above some bottom
boundary ∂−C2, for C2 ∈ B; see Figure 4. By construction,
σC1

lies below σC2
at the x-coordinate xv of v, which implies

that the entire vertical segment connecting ∂+C1 and ∂−C2

at xv is fully contained in C1 ∪ C2, so v cannot lie on the



boundary of the union, a contradiction that establishes the
claim.

Without loss of generality, we consider only the case where
v lies on the upper envelope E+

A of the top boundaries of the
sets in A. Since any pair of these boundaries intersect in at
most s points, the number m = mA of connected portions of
top boundaries that constitute E+

A satisfies m ≤ λs+2(nA),
where λs(q) is the maximal length of Davenport-Schinzel
sequences of order s on q symbols (see [15]). Enumerate
these arcs from left to right as δ1, . . . , δm, and let A∗ denote
the set containing them.

Let H0 denote the subgraph of A∗×B consisting of all the
pairs (δ, C), such that C forms with (the set of A containing)
δ a regular vertex on ∂U (where the two sets touch each
other), and so that (a) the touching point lies on δ and on
∂−C, and (b) δ lies fully below σC (i.e., the x-span of σC

contains that of δ). If (b) does not hold, then an endpoint
of σC lies above δ, and there can be at most two such arcs δ
(for any fixed C), so the number of excluded pairs is at most
2nB . Hence, the number of regular “bichromatic” vertices
formed by A ∪ B, lying on E+

A , and not counted in H0 is
only O(nB).

Our next step is to construct a collection of complete bi-
partite graphs {A∗

i × Bi}i, such that, for each i, A∗
i ⊂ A∗,

Bi ⊂ B, and the union of these graphs is edge-disjoint and
covers H0. In addition: (a) The sum

P

i(|A∗
i | + |Bi|) will

be small, in a sense to be made precise below. (b) For each
i, there is an x-interval Ii such that, for each δ ∈ A∗

i and
C ∈ Bi, the line `C containing the spine σC of C passes
fully above δ over Ii (although σC may end within Ii). (c)
For each pair (δ, C) ∈ H0, there exists i such that δ ∈ A∗

i ,
C ∈ Bi, and the x-coordinate of the touching point δ∩∂−C
lies in Ii.

Suppose we have such a collection at hand. Fix one of the
graphs A∗

i ×Bi. We claim that, for any δ ∈ A∗
i , C ∈ Bi, such

that (δ,C) ∈ H0, the relevant touching vertex v of δ ∩ ∂−C
lies on the lower envelope E−

Bi
of the bottom boundaries of

the sets in Bi. This follows using the same arguments as
in the preceding step (see also [4]). That is, suppose to the
contrary that v lies above the bottom boundary ∂−C′ of an-
other set C′ ∈ Bi. By assumption, σC′ lies above v (because
v ∈ δ) and thus v lies in the interior of C ′, contradicting the
assumption that v is a vertex of the union. Note that it is
crucial that the x-coordinate of v lies in the x-interval Ii as
above; see Figure 5(a).

In other words, each vertex of this kind is an intersection
point of E−

Bi
and the concatenation of the arcs in A∗

i . Hence,

by merging, in the x-order, the breakpoints of E−
Bi

and the
endpoints of the arcs in A∗

i , it easily follows that the number
of such vertices is O(λs+2(|Bi|) + |A∗

i |) = O∗(|A∗
i | + |Bi|).

Summing this bound over all subgraphs A∗
i × Bi yields an

overall bound for the number of pairs (δ,C) ∈ H0 (excluding
the linear number of pairs that we do not count in H0, as
above). See below for the precise bound.

To obtain the desired cover of H0, we proceed as follows.
Let L denote the set of the lines supporting the spines of
the sets in B. Fix a sufficiently large constant parameter
r, and construct a suboptimal (1/r)-cutting of the arrange-
ment A(L) in the following standard manner. Draw a ran-
dom sample R of O(r log r) lines of L, form the arrangement
A(R) and triangulate its cells using vertical decomposition.

We denote the resulting triangulated arrangement as A‖(R).
This produces O(r2 log2 r) = O∗(r2) cells, and we may as-

sume (since this occurs with high probability) that each cell
is crossed by at most nB/r lines of L (see [5, 9] for further
details).

Consider a pair (δ, C) ∈ H0, where the touching between

δ and ∂−C occurs at some cell τ of A‖(R). In this case
δ crosses τ (or has an endpoint inside τ ), and σC either
intersects τ or lies above τ (i.e., within the common x-span
of C and τ , σC lies fully above τ ). For technical reasons,
we classify the arcs δ that cross τ as being either short, if δ
does not intersect the top edge of τ , or tall, if δ intersects
the top edge. Let As

τ be the set of short arcs in τ , and At
τ

the set of tall arcs in τ .
The next lemma shows that the overall number of short

arcs, over all cells τ , is small.

Lemma 2.3.
P

τ |As
τ | = O(r2 log3 r + |A∗| log r) .

Proof: We may ignore pairs (δ, τ ), where δ ends inside τ ;
there are at most 2|A∗| such pairs. Construct a segment

tree T on the x-projections of the cells of A‖(R). Consider
a node v of the tree, let Ξv denote the set of cells stored at
v, and let Iv denote the x-span of v. The cells in Ξv are
linearly ordered in the y-direction, in the sense that for each
x0 ∈ Iv the vertical line x = x0 crosses all of them in a fixed
order; see Figure 5(b).

In each cell τ , there are at most two (either tall or short)
arcs, whose x-spans overlap, but not contained in, Iv (the
first intersects the vertical line through the left endpoint of
Iv, and the second intersects the vertical line through its
right endpoint), for a total of O(r2 log3 r) such arcs, over all
cells τ and all nodes v of T .

We thus continue the analysis for those (short) arcs δ of
A∗, whose x-span is contained in Iv. There is at most one
cell τ ∈ Ξv such that δ ∈ As

τ ; see Figure 5(c). The number
of nodes v at which δ has this property is O(log r), because
Iv contains the x-coordinate of an endpoint (actually, both
endpoints) of δ. Hence, the contribution of arcs δ as above to
P

τ |As
τ | is O(|A∗| log r). Combining this with the previous

bound completes the proof of the lemma. 2

Remark: 1) The fact that the arcs δ have pairwise openly
disjoint x-projections is crucial for the bound that we ob-
tain in Lemma 2.3. The decomposition of (a cover of) H0

that we construct is a variant of the decomposition obtained
in [4]; however, the analysis in [4] does not exploit the special
structure of the arcs δ, and results in a suboptimal bound.
2) An individual arc δ may cross Ω(r) cells τ , each of whose
top boundary is disjoint from δ. However, Lemma 2.3 shows
that the overall number of these crossings, summed over all
arcs δ, is relatively small.

Each cell τ for which |As
τ | > |A∗|

r2 is split, by vertical lines,

into subcells, such that each subcell τ ′ satisfies |As
τ ′ | ≤ |A∗|

r2 ;

the number of cells is still O∗(r2).
Fix a (new) cell τ , and form the complete bipartite graph

As
τ × C∗

τ , where C∗
τ consists of all sets C ∈ B such that `C

passes above τ . We associate the interval Iτ (the x-span of
τ ) with this graph. Since r is a constant, we have

X

τ

(|As
τ | + |C∗

τ |) = O∗(mA + nB)

(where the constant of proportionality depends on r).
We next claim that the overall number of boundary touch-

ings on the boundary of the union, occurring within a cell
τ and involving a tall arc in τ , summed over all cells τ , is
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Figure 5: (a) The boundary touching v, formed by the lower boundary of C and δ, and lying outside the interval I, can be “hidden” from

E−
B by the lower boundary of another C ′

∈ B. (b)–(c) The cells τ1, τ2, τ3, cross the x-span Iv of v from left to right. (b) Any vertical line in

Iv crosses all these cells in the same order. (c) The arc δ crosses τ1, τ2, τ3, where τ1 is the unique cell whose top boundary edge is not crossed

by δ; δ is short there and tall at τ2, τ3.
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Figure 6: ∂−C touches δ1 and δ3 inside τ at v1 and v3, respec-

tively, and cannot touch the intermediate tall arc δ2.

only linear in nB (and thus we need not provide a compact
representation for these pairs). Indeed, let τ be a cell of

A‖(R), and let `C be the line containing the spine σC of a
set C that intersects τ or passes fully above τ . We claim
that there are at most two tall arcs in τ that touch ∂−C
at a point that lies on ∂U . Indeed, suppose, to the con-
trary, that there are three such arcs δ1, δ2, δ3, which appear
on E+

A in that order (from left to right). Consider the two
respective boundary touchings that ∂−C forms with δ1, δ3,
at two respective points v1, v3 inside τ . Then, due to the
convexity of C, its portion between v1 and v3 lies below the
top edge of τ , and δ2 lies below that portion, so it cannot
be tall in τ , a contradiction that establishes the claim; see
Figure 6. Thus the overall number of regular vertices of the
above kind is O(nB), as asserted.

We thus conclude that the overall number of boundary
touchings involving both short and tall arcs, in all subcases
considered so far, is O∗(mA + nB).

We continue the construction recursively, within each cell
τ , with As

τ and the subset Cτ of those C ∈ B whose line

`C crosses τ . We have |As
τ | ≤ |A∗|

r2 = mA
r2 , |Cτ | ≤ nB

r
.

However, the next stage of the recursion is performed in the
dual plane, and proceeds as follows. For each resulting cell

τ , map As
τ and Cτ to the dual plane. For each C ∈ Cτ , we

map `C to a dual point `∗C , and each arc δ in As
τ is mapped

to a convex x-monotone curve δ∗, which is the locus of all
points dual to lines that are tangent to δ (possibly at one of
its endpoints) and pass above δ (see [4] and [6] for further
details). Thus a line `C lies above an arc δ if and only if the
dual point `∗C lies above δ∗. Each pair of dual arcs δ∗

1 , δ∗2
intersect each other exactly once, since any such intersection
point is the dual of a common tangent to δ1, δ2 that passes
above both of them, and since δ1, δ2 are two convex curves
that have disjoint x-spans, there is exactly one such common
tangent. We now construct (for each cell τ obtained at the
preceding step) a (1/r)-cutting of the arrangement of the
dual arcs δ∗, obtaining O∗(r2) subcells, each of which is

crossed by at most
|As

τ |

r
≤ mA

r3 dual arcs δ∗, and contains at

most |Cτ |

r2 ≤ nB
r3 dual points `∗C ; see [3] for details.

As above, we construct, for each subcell τ ′ of this cutting,
a complete bipartite graph that connects the dual points
in τ ′ to the dual arcs that pass fully below that subcell.
Again, since r is a constant, the sum of the sizes of the ver-
tex sets of these graphs is O(mA + nB). We are thus left
with O∗(r4) subproblems, each involving at most mA

r3 arcs
δ of A∗, and at most nB

r3 sets in B. We now process each
subproblem recursively, going back to the primal plane, and
keep alternating in this manner, until we reach subproblems
in which either m2

A < nB , or n2
B < mA. In the former

(resp., latter) case, we continue the recursive construction
only in the dual (resp., primal) plane, and stop as soon as
one of mA, nB becomes smaller than r, in which case we
output the complete bipartite graph As

τ × Cτ involving the
input sets to the subproblem. Note that in the bottom of
the recurrence the boundary touchings are not necessarily
obtained on the lower envelope of the boundary sets in Cτ ,
and thus the bound on their number in this particular case
is |As

τ | · |Cτ | = O(|As
τ |+ |Cτ |), where the constant of propor-

tionality depends on r.
The preceding arguments imply that the union of all the

bi-cliques constructed by this procedure, including the in-
teractions with tall arcs and other “leftover” pairs detected
by the decomposition, covers H0. Indeed, for each such pair
(δ, C) ∈ H0, the line `C containing the spine σC of C lies



fully above δ. Our procedure detects all such pairs (δ, C)
either (i) at the bottom of the recurrence, in which case all
these pairs are reported in a brute force manner, or (ii) at a
recursive step, performed in the primal plane and involving
a cell τ in which the boundary touching appears, such that
`C lies above τ and δ is short in τ , or (iii) at a recursive
step, performed in the dual plane and involving a cell τ ′,
such that `∗C lies inside τ ′ and δ∗ passes fully below it.

Let R(mA, nB) denote the maximum number of boundary
touchings on the boundary of the union, that arise at a
recursive step involving mA arcs δ and nB sets C, as above,
and which are formed between one of the arcs δ and the
bottom boundary of one of the sets C. As argued above,
the number of such bichromatic touchings, that arise for any
of the complete bipartite graphs generated at this stage, is
nearly-linear in the sizes of the vertex sets of that graph.
Hence R satisfies the following recurrence:

R(mA, nB) ≤
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:

O∗ (mA + nB) + O∗(r4)R
`

mA
r3 , nB

r3

´

,

if m2
A ≥ nB ≥ √

mA,

O∗(mA + nB) + O∗(r2)R
`

mA
r

, nB
r2

´

,

if nB > m2
A,

O∗(mA + nB) + O∗(r2)R
`

mA
r2 , nB

r

´

,

if mA > n2
B ,

O∗(mA + nB),

if min{mA, nB} < r.

It is then easy to see, using induction on mA and nB , that
the solution of this recurrence is

R(mA, nB) = O∗(m
2/3
A n

2/3
B + mA + nB) = (3)

O∗(n
2/3
A n

2/3
B + nA + nB).

Summing these bounds over all bi-cliques A × B of the
first decomposition phase, and using the bound in (1), the
upper bound of Theorem 2.1 follows.

Lower bounds. We introduce here a construction given
in [13]. Construct a system of n lines and n points with

Θ(n4/3) incidences between them (see, e.g., [14]). Map each
line to a long and thin rectangle, and each point to a small
disk, in such a way that, for each pair of a point p incident
to a line `, the disk into which p is mapped slightly pen-
etrates the rectangle into which ` is mapped, and all the
intersections between the boundaries of the disks and the
rectangles lie on the boundary of their union. Clearly, s = 4
in this construction. Hence, we obtain a collection of 2n
convex regions, each pair of whose boundaries intersect in
at most four points, which have Θ(n4/3) regular vertices on
the boundary of their union. This completes the proof of
Theorem 2.1. 2

Open problems. A major open problem is to extend the
bound to the case where the sets in C are not convex. A nat-
ural case to study is where the sets in C are x-monotone, (i.e.,
each of the lower and upper portions of ∂C is an x-monotone
curve), and, for each set C ∈ C, the spine σC is contained
in C, and each pair of boundaries intersect in a constant

number, s, of points. In an earlier version of the paper, we
obtained the upper bound O∗(n(3s+1)/(2s+1)) for this case,

which interpolates between the old bound O∗(n3/2) of [4]
and the new bound derived above. We tend to conjecture
that the new bound O∗(n4/3) also holds in this extended sce-
nario, provided that each set in C has a constant description
complexity2.
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