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Abstract

A k-uniform semi-algebraic hypergraph H is a pair
(P,E), where P is a subset of Rd and E is a collection
of k-tuples {p1, . . . , pk} ⊂ P such that (p1, . . . , pk) ∈ E
if and only if the kd coordinates of the pi-s satisfy a
boolean combination of a finite number of polynomial
inequalities. The complexity of H can be measured
by the number and the degrees of these inequalities
and the number of variables (coordinates) kd. Several
classical results in extremal hypergraph theory can
be substantially improved when restricted to semi-
algebraic hypergraphs.

Substantially improving a theorem of Fox, Gromov,
Lafforgue, Naor, and Pach, we establish the following
“polynomial regularity lemma”: For any 0 < ε <
1/2, the vertex set of every k-uniform semi-algebraic
hypergraph H = (P,E) can be partitioned into at
most (1/ε)c parts P1, P2, . . ., as equal as possible, such
that all but an at most ε-fraction of the k-tuples of
parts (Pi1 , . . . , Pik) are homogeneous in the sense that
either every k-tuple (pi1 , . . . , pik) ∈ Pi1 × . . . × Pik
belongs to E or none of them do. Here c > 0 is a
constant that depends on the complexity of H. We also
establish an improved lower bound, single exponentially
decreasing in k, on the best constant δ > 0 such that
the vertex classes P1, . . . , Pk of every k-partite k-uniform
semi-algebraic hypergraph H = (P1 ∪ . . . ∪ Pk, E) with
|E| ≥ εΠk

j=1|Pi| have, for 1 ≤ i ≤ k, δ|Pi|-element
subsets P ′i ⊆ Pi satisfying P ′1 × . . . × P ′k ⊆ E. The
best previously known lower bound on δ due to Bukh
and Hubard decreased double exponentially fast in k.
We give three geometric applications of our results. In
particular, we establish the following strengthening of
the so-called same-type lemma of Bárány and Valtr:
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Any disjoint finite sets P1, . . . , Pk ⊂ Rd (k > d) have

for 1 ≤ i ≤ k subsets P ′i of size at least 2−O(d3k log k)|Pi|
with the property that every k-tuple formed by taking
one point from each P ′i has the same order type.

The above techniques carry over to property test-
ing. We show that for any typical hereditary hypergraph
property Q, there is a randomized algorithm with query
complexity (1/ε)c(Q) to determine (with probability at
least .99) whether a k-uniform semi-algebraic hyper-
graph H = (P,E) with constant description complexity
is ε-near to having property Q, that is, whether one can
change at most ε|P |k hyperedges of H in order to obtain
a hypergraph that has the property. The testability of
such properties for general k-uniform hypergraphs was
first shown by Alon and Shapira (for graphs) and by
Rödl and Schacht (for k > 2). The query complexity
time of their algorithms is enormous, growing consider-
ably faster than a tower function.

1 Introduction.

A k-uniform hypergraph H = (P,E) consists of a vertex
set P and an edge set (or hyperedge set) E, which is
a collection of k-element subsets of P . A hypergraph
is k-partite if it is k-uniform and its vertex set P is
partitioned into k parts, P = P1 ∪ . . . ∪ Pk, such that
every edge has precisely one vertex in each part. It
follows from a classical theorem of Erdős [17], which
was one of the starting points in extremal hypergraph
theory, that if |P1| = . . . = |Pk| and |E| ≥ εΠk

i=1|Pi| for
some ε > 0, then one can find subsets P ′i ⊂ Pi such that

|P ′i | = Ω

(
log |Pi|
log(1/ε)

)1/(k−1)

,

and P ′1 × · · · × P ′k ⊂ E. In other words, H contains
a large complete k-partite subhypergraph. For graphs
(k = 2), this was already shown in [31].

It turns out that much larger complete k-partite
subhypergraphs can be found in hypergraphs that admit
a simple algebraic description. To make this statement
precise, we need some terminology.

Semi-algebraic setting. A k-partite hypergraph H =
(P1 ∪ . . . ∪ Pk, E) is called semi-algebraic in Rd, if its
vertices are points in Rd, and there are polynomials



f1, . . . , ft ∈ R[x1, . . . , xkd] and a Boolean function Φ
such that for every pi ∈ Pi (i = 1, . . . , k), we have

(p1, . . . , pk) ∈ E ⇔

Φ(f1(p1, . . . , pk) ≥ 0; . . . ; ft(p1, . . . , pk) ≥ 0) = 1.

At the evaluation of fj(p1, . . . , pk), we substitute the
variables x1, . . . , xk with the coordinates of p1, the
variables xk+1, . . . , x2k with the coordinates of p2, etc.

We say that H has complexity (t,D) if each poly-
nomial fj with 1 ≤ j ≤ t has the property that for
any fixed k − 1 points q1, . . . , qk−1 ∈ Rd, the d-variate
polynomials

hj,1(x1) = fj(x1, q1, . . . , qk−1),
hj,2(x2) = fj(q1,x2, q2, . . . , qk−1),

...
hj,k(xk) = fj(q1, . . . , qk−1,xk),

are of degree at most D (in notation, deg(hj,i) ≤ D for
1 ≤ j ≤ t and 1 ≤ i ≤ k). It follows that deg(fj) ≤ kD
for every j.

If our k-uniform hypergraph H = (P,E) is a priori
not k-partite, we fix an enumeration p1, p2, . . . of the
elements of P ⊂ Rd, and we say that H is semi-algebraic
with complexity (t,D) if for every 1 ≤ i1 < · · · < ik ≤ n,

(pi1 , . . . , pik) ∈ E ⇔

Φ(f1(pi1 , . . . , pik) ≥ 0, . . . , ft(pi1 , . . . , pik) ≥ 0) = 1,

where Φ is a Boolean function and f1, . . . , ft are poly-
nomials satisfying the same properties as above.

Density theorem for semi-algebraic hypergraphs.
Fox et al. [19] showed that there exists a constant
c = c(k, d, t,D) > 0 with the following property.
Let (P1 ∪ . . . ∪ Pk, E) be any k-partite semi-algebraic
hypergraph in Rd with complexity (t,D), and suppose
that |E| ≥ εΠk

i=1|Pi|. Then one can find subsets
P ′i ⊂ Pi, 1 ≤ i ≤ k, with |P ′i | ≥ εc|Pi| which induce
a complete k-partite subhypergraph, that is, P ′1 × . . .×
P ′k ⊂ E. The original proof gives a poor upper bound
on c(k, d, t,D), which is tower-type in k. Combining
a result of Bukh and Hubard [11] with a variational
argument of Komlós [30], [33], the dependence on k
can be improved to double exponential. Our following
result, which will be proved in Section 2, reduces this
bound to single exponential in k.

Theorem 1.1. For any positive integers d, t,D, there
exists a constant C = C(d, t,D) with the following
property. Let ε > 0 and let H = (P1 ∪ . . . ∪ Pk, E)
be any k-partite semi-algebraic hypergraph in Rd with

complexity (t,D) and |E| ≥ εΠk
i=1|Pi|. Then one can

choose subsets P ′i ⊂ Pi, 1 ≤ i ≤ k, such that

|P ′i | ≥
ε(

d+D
d )

Ck
|Pi|,

and P ′1 × . . . × P ′k ⊆ E. Moreover, we can take C =

220m log(m+1)tm/k, where m =
(
d+D
d

)
− 1.

In many applications, the dependency on the di-
mension d also becomes crucial. This is typically the
case for relations that have complexity (t, 1) (i.e., when
D = 1).

Substituting D = 1 in Theorem 1.1, we obtain the
following.

Corollary 1.1. Let ε > 0 and let H = (P1 ∪ . . . ∪
Pk, E) be a k-partite semi-algebraic hypergraph in Rd
with complexity (t, 1) and |E| ≥ εΠk

i=1|Pi|. Then one
can choose subsets P ′i ⊂ Pi, 1 ≤ i ≤ k, such that

|P ′i | ≥
εd+1

220kd log(d+1)td
|Pi|,

and P ′1 × · · · × P ′k ⊆ E.

Polynomial regularity lemma for semi-algebraic
hypergraphs. Szemerédi’s regularity lemma is one
of the most powerful tools in modern combinatorics.
In its simplest version [41] it gives a rough structural
characterization of all graphs. A partition is called
equitable if any two parts differ in size by at most
one. According to the lemma, for every ε > 0 there is
K = K(ε) such that every graph has an equitable vertex
partition into at most K parts such that all but at most
an ε fraction of the pairs of parts behave “regularly”.1

The dependence of K on 1/ε is notoriously bad. It
follows from the proof that K(ε) may be taken to be of
an exponential tower of 2-s of height ε−O(1). Gowers [25]
used a probabilistic construction to show that such an
enormous bound is indeed necessary. Consult [15], [34],
[20] for other proofs that improve on various aspects of
the result. Szemerédi’s regularity lemma was extended
to k-uniform hypergraphs by Gowers [24, 26] and by
Nagle, Rödl, Schacht, and Skokan [35]. The bounds on
the number of parts go up in the Ackermann hierarchy,
as k increases. This is quite unfortunate, because in
property testing and in other algorithmic applications
of the regularity lemma this parameter has a negative
impact on the efficiency.

1For a pair (Pi, Pj) of vertex subsets, e(Pi, Pj) denotes the

number of edges in the graph running between Pi and Pj . The

density d(Pi, Pj) is defined as
e(Pi,Pj)

|Pi||Pj |
. The pair (Pi, Pj) is called

ε-regular if for all P ′i ⊂ Pi and P ′j ⊂ Pj with |P ′i | ≥ ε|Pi| and
|P ′j | ≥ ε|Pj |, we have |d(P ′i , P

′
j)− d(Pi, Pj)| ≤ ε.



Alon et al. [3] (for k = 2) and Fox et al. [19]
(for k > 2) established an “almost perfect” regularity
lemma for k-uniform semi-algebraic hypergraphs H =
(P,E). According to this, P has an equitable partition
such that all but at most an ε-fraction of the k-tuples
of parts (Pi1 , . . . , Pik) behave not only regularly, but
homogeneously in the sense that either Pi1 × . . .×Pik ⊆
E or Pi1 × . . . × Pik ∩ E = ∅. The proof is essentially
qualitative: it gives a very poor estimate for the number
of parts in such a partition.

In Section 4, we deduce a much better quantitative
form of this result, showing that the number of parts
can be taken to be polynomial in 1/ε.

Theorem 1.2. For any positive integers k, d, t,D there
exists a constant c = c(k, d, t,D) > 0 with the following
property. Let 0 < ε < 1/2 and let H = (P,E)
be a k-uniform semi-algebraic hypergraph in Rd with
complexity (t,D). Then P has an equitable partition
P = P1 ∪ · · · ∪ PK into at most K ≤ (1/ε)c parts such
that all but an ε-fraction of the k-tuples of parts are
homogeneous.

See [16], for other favorable Ramsey-type properties
of semi-algebraic sets.

Geometric applications. In Section 3, we prove three
geometric applications of Corollary 1.1.

1. Same-type lemma. Let P = (p1, . . . , pn) be an n-
element point sequence in Rd in general position, i.e.,
assume that no d+1 points lie in a common hyperplane.
For i1 < i2 < · · · < id+1, the orientation of the (d+ 1)-
tuple (pi1 , pi2 , . . . , pid+1

) ⊂ P is defined as the sign
of the determinant of the unique linear mapping M
that sends the d vectors pi2 − pi1 , pi3 − pi1 , . . . , pid+1

−
pi1 , to the standard basis e1, e2, . . . , ed. Denoting the
coordinates of pi by xi,1, . . . , xi,d, the orientation of
(pi1 , pi2 , . . . , pid+1

) is

sgn det


1 1 · · · 1
x1,1 x2,1 · · · xd+1,1

...
...

...
...

x1,d x2,1 · · · xd+1,1

 .

The order-type of P = (p1, p2, . . . , pn) is the map-
ping χ :

(
P
d+1

)
→ {+1,−1} (positive orientation, nega-

tive orientation), assigning each (d + 1)-tuple of P its
orientation. Therefore, two n-element point sequences
P and Q have the same order-type if they are “combi-
natorially equivalent.” See [33] and [22] for more back-
ground on order-types.

Let (P1, . . . , Pk) be a k-tuple of finite sets in Rd.
A transversal of (P1, . . . , Pk) is a k-tuple (p1, . . . , pk)
such that pi ∈ Pi for all i. We say that (P1, . . . , Pk)

has same-type transversals if all of its transversals have
the same order-type. Bárány and Valtr [9] showed that
for d, k > 1, there exists a c = c(d, k) such that the
following holds. Let P1, . . . , Pk be finite sets in Rd such
that P1 ∪ · · · ∪ Pk is in general position. Then there
are subsets P ′1 ⊂ P1, . . . , P

′
k ⊂ Pk such that the k-

tuple (P ′1, . . . , P
′
k) has same-type transversals and |P ′i | ≥

c(d, k)|Pi|. Their proof shows that c(d, k) = 2−k
O(d)

.
We make the following improvement.

Theorem 1.3. For k > d, let P1, . . . , Pk be finite sets
in Rd such that P1∪· · ·∪Pk is in general position. Then
there are subsets P ′1 ⊂ P1, . . . , P

′
k ⊂ Pk such that the k-

tuple (P ′1, . . . , P
′
k) has same-type transversals and

|P ′i | ≥ 2−O(d3k log k)|Pi|,

for all i.

2. Homogeneous selections from hyperplanes. Bárány
and Pach [8] proved that for every integer d ≥ 2, there
is a constant c = c(d) > 0 with the following property.
Given finite families L1, . . . , Ld+1 of hyperplanes in Rd
in general position,2 there are subfamilies L′i ⊂ Li with
|L′i| ≥ c(d)|Li|, 1 ≤ i ≤ d + 1, and a point q ∈ Rd
such that for (h1, . . . , hd+1) ∈ L′1 × · · · × L′d+1, q lies in
the unique bounded simplex ∆(h1, . . . , hd+1) enclosed

by
⋃d+1
i=1 hi. The proof gives that one can take c(d) =

2−(d+1)2d

, because they showed that c(d) = c(d, d +
2) will meet the requirements, where c(d, k) denotes
the constant defined above for same-type transversals.
Thus, Theorem 1.3 immediately implies the following
improvement.

Theorem 1.4. Given finite families L1, . . . , Ld+1 of
hyperplanes in Rd in general position, there are subfam-
ilies L′i ⊂ Li, 1 ≤ i ≤ d+ 1, with

|L′i| ≥ 2−O(d4 log(d+1))|Li|,

and a point q ∈ Rd such that for every (h1, . . . , hd+1) ∈
L′1 × · · · × L′d+1, q lies in the unique bounded simplex

∆(h1, . . . , hd+1) enclosed by
⋃d+1
i=1 hi.

3. Tverberg-type result for simplices. In 1998, Pach
[36] showed that for all natural numbers d, there ex-
ists c′ = c′(d) with the following property. Let
P1, P2, . . . , Pd+1 ⊂ Rd be disjoint n-element point sets
with P1 ∪ · · · ∪ Pd+1 in general position. Then there is
a point q ∈ Rd and subsets P ′1 ⊂ P1, . . . , P

′
d+1 ⊂ Pd+1,

2No element of
⋃d+1

i=1 Li passes through the origin, any d

elements have precisely one point in common, and no d + 1 of
them have a nonempty intersection.



with |P ′i | ≥ c′(d)|Pi|, such that all closed simplices with
one vertex from each P ′i contains q. The proof shows

that c′(d) = 2−22O(d)

. Recently Kyncl et al. [32] im-

proved this to c′(d) > 2−2d2+O(d)

. Here we make the
following improvement.

Theorem 1.5. Let P1, P2, . . . , Pd+1 ⊂ Rd be disjoint
n-element point sets with P1 ∪ · · · ∪ Pd+1 in general
position. Then there is a point q ∈ Rd and subsets
P ′1 ⊂ P1, . . . , P

′
d+1 ⊂ Pd+1, with

|P ′i | ≥ 2−O(d2 log(d+1))|Pi|,
such that all closed simplices with one vertex from each
P ′i contains q.

Algorithmic applications: Property testing In
Section 5, we apply the polynomial regularity lemma
(Theorem 1.2) to property testing. We show that for
any typical hereditary hypergraph propertyQ, there is a
randomized algorithm with query complexity (1/ε)c(Q)

to determine (with probability at least .99) whether a k-
uniform semi-algebraic hypergraph H = (P,E) is ε-near
to having property Q, that is, whether one can change
at most ε|P |k hyperedges of H in order to obtain a
hypergraph that has the property. The exact statement
shows that the query complexity is for every property,
polynomial in a natural function of that property, which
one typically expects to be polynomial. For background
and precise results, see Section 5.

Organization. The rest of this paper is organized
as follows. In the next section, we prove Theorem
1.1, giving a quantitative density theorem for k-uniform
hypergraphs. In Section 3, we prove several applications
of this result. In Section 4, we prove the quantitative
regularity lemma for semi-algebraic hypergraphs. In
Section 5, we establish three results about property
testing within semi-algebraic hypergraphs, Theorems
5.1, 5.2, and 5.4 , showing that it can be efficiently
tested whether a semi-algebraic hypergraph of bounded
complexity has a given hereditary property.

We systemically omit floor and ceiling signs when-
ever they are not crucial for the sake of clarity of pre-
sentation. We also do not make any serious attempt
to optimize absolute constants in our statements and
proofs.

2 Proof of Theorem 1.1.

Let H = (P,E) be a semi-algebraic k-uniform hyper-
graph in d-space with complexity (t,D), where P =
{p1, . . . , pn}. Then there exists a semi-algebraic set

E∗ =
{

(x1, . . . ,xk) ∈ Rdk :

Φ(f1(x1, . . . ,xk) ≥ 0, . . . , ft(x1, . . . ,xk) ≥ 0) = 1}

such that

(pi1 , . . . , pik) ∈ E∗ ⊂ Rdk ⇔ (pi1 , . . . , pik) ∈ E.

Fix k − 1 points q1, . . . , qk−1 ∈ Rd and consider the
d-variate polynomial hi(x) = fi(q1, . . . , qk−1,x), 1 ≤
i ≤ t. We use a simple but powerful trick known
as Veronese mapping (linearization), that transforms
hi(x) into a linear equation. For m =

(
d+D
d

)
− 1, we

define φ : Rd → Rm to be the (Veronese) mapping given
by

φ(x1, . . . , xd) = (xα1
1 · · ·x

αd

d )1≤α1+···+αd≤D ∈ Rm.

Then φ maps each surface hi(x) = 0 in Rd to a
hyperplane h∗i in Rm. Note that φ is injective. For
example, the d-variate polynomial hi(x1, . . . , xd) =
c0 +

∑
i aix

α1
1 · · ·x

αd

d would correspond to the linear

equation h∗i (y1, . . . , ym) = c0 +
m∑
i=1

aiyi. Given a point

set P = {p1, . . . , pn} ⊂ Rd, we write

φ(P ) = {φ(p1), . . . , φ(pn)} ⊂ Rm.

Clearly we have the following.

Observation 2.1. For p ∈ Rd, we have hi(p) =
h∗i (φ(p)) and hence

sgn(hi(p)) = sgn(h∗i (φ(p))).

A generalized simplex in Rd is the intersection of
d + 1 half-spaces. Given a relatively open generalized
simplex ∆ ⊂ Rm, we say that a hyperplane h∗ ⊂ Rm
crosses ∆ if it intersects ∆ but does not contain it. Let
us recall an old lemma due to Chazelle and Friedman
(see also [14]).

Lemma 2.1. ([13]) For m ≥ 1, let L be a set of n
hyperplanes in Rm, and let r be an integer, 1 < r ≤
n. Then there is a subdivision of Rm into at most
210m log(m+1)rm relatively open generalized simplices ∆i,
such that each ∆i is crossed by at most n/r hyperplanes
of L.

The main tool used in the proof of Theorem 1.1 is
the following result on bipartite semi-algebraic graphs
(k = 2) with point sets in different dimensions. A
very similar result was obtained by Alon et al. (see
Section 6 in [3]). Let G = (P,Q,E) be a bipartite
semi-algebraic graph, where P ⊂ Rd1 , Q ⊂ Rd2 , and
E ⊂ P × Q has complexity (t,D). Hence there are



polynomials f1, f2, . . . , ft and a boolean formula Φ such
that the semi-algebraic set

E∗ = {(x1,x2) ∈ Rd1+d2 :

Φ(f1(x1,x2) ≥ 0, . . . , ft(x1,x2) ≥ 0) = 1},

satisfies

(p, q) ∈ E ⇔ (p, q) ∈ E∗ ⊂ Rd1+d2 .

For any point p ∈ P , the Veronese mapping φ maps the
surface fi(p,x) = 0 in Rd to a hyperplane f∗i (p,y) = 0
in Rm, for 1 ≤ i ≤ t.

Lemma 2.2. Let G = (P,Q,E) be as above with |E| ≥
ε|P ||Q|. Then there are subsets P ′ ⊂ P and Q′ ⊂ Q
such that

|P ′| ≥ ε

8
|P | and |Q′| ≥ εm+1

tm214m log(m+1)
|Q|,

where m =
(
d2+D
d2

)
− 1, and P ′ × Q′ ⊂ E. Moreover,

there is a relatively open simplex ∆ ⊂ Rm such that
φ(Q′) = φ(Q)∩∆, and for all p ∈ P ′ and 1 ≤ i ≤ t, the
hyperplane f∗i (p,y) = 0 in Rm does not cross ∆.

Proof. Let S be the set of (at most) t|P | surfaces in
Rd2 defined by fi(p,x) = 0, for 1 ≤ i ≤ t and for each
p ∈ P . Set m =

(
d2+D
d2

)
− 1 and let φ : Rd2 → Rm

denote the Veronese mapping described above. Then
each surface fi(p,x) = 0 in Rd2 will correspond to a
hyperplane f∗(p,y) = 0 in Rm. Then let L be the set of
t|P | hyperplanes in Rm that corresponds to the surfaces
in S.

Let r > 1 be an integer that will be determined
later. By Lemma 2.1, there is a subdivision of Rm
into at most 210m log(m+1)rm relatively open generalized
simplices ∆i, such that each ∆i is crossed by at most
t|P |/r hyperplanes from L. We define Qi ⊂ Q such that
φ(Qi) = φ(Q) ∩∆i. If

|Qi| <
ε

2 · 210m log(m+1)rm
|Q|,

then we discard all edges in E that are incident to
vertices in Qi. By Lemma 2.1, we have removed at
most

210m log(m+1)rm
ε

2 · 210m log(m+1)rm
|P ||Q| = ε

2
|P ||Q|

edges. Let E1 be the set of remaining edges. Hence,
|E1| ≥ ε|P ||Q| − (ε/2)|P ||Q| = (ε/2)|P ||Q|. For p ∈ P ,
if all t hyperplanes f∗1 (p,y) = 0, . . . , f∗t (p,y) = 0 in

Rm do not cross ∆i, then by Observation 2.1, the sign
pattern of fj(p, q) does not change over all q ∈ Qi.
Hence in this case, we have either p × Qi ⊂ E1 or
p×Qi ⊂ E1.

We define Pi ⊂ P to be the set of points in P such
that p ∈ Pi if and only if p is adjacent to all points in Qi
(with respect to E1) and all t hyperplanes fj(p,x) = 0,
1 ≤ j ≤ t, in Rm do not cross the simplex ∆i. By
Lemma 2.1, we know that at most t|P |/r points in P
gives rise to a hyperplane that crosses ∆i for each i.

Hence there exists a Pj such that |Pj | ≥ (ε/8)|P |,
since otherwise

|E1| ≤
∑
i

(
ε

8
|P |+ t|P |

r

)
|Qi| =

(
ε

8
+
t

r

)
|P ||Q|.

For r = 8t/ε, this implies |E1| < (ε/4)|P ||Q| which is a
contradiction. Therefore we have subsets Pj ⊂ P and
Qj ⊂ Q such that |Pj | ≥ (ε/8)|P | and Pj × Qj ⊂ E1.
By construction of E1 and for r = 8t/ε, we have

|Qj | ≥
εm+1

tm214m log(m+1)
|Q|.

This completes the proof.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let H = (P,E) be a k-partite
semi-algebraic hypergraph in d-space with complexity
(t,D), such that P = P1 ∪ · · · ∪ Pk and |E| ≥
ε|P1| · · · |Pk|. For m =

(
d+D
d

)
− 1, we will show that

there are subsets P ′1 ⊂ P1, P
′
2 ⊂ P2, . . . , P

′
k ⊂ Pk, such

that for 1 ≤ i ≤ k,

|P ′i | ≥
εm+1

8k(m+1)tm(m+ 2)km214m log(m+1)
|Pi|,

and P ′1 × · · · × P ′k ⊂ E. This would suffice to prove the
statement. We proceed by induction on k. The base
case k = 2 follows from Lemma 2.2. Now assume that
the statement holds for k′ < k.

Since E is semi-algebraic with complexity (t,D),
there are polynomials f1, . . . , ft and a Boolean formula
Φ such that the semi-algebraic set

E∗ = {(x1, . . . ,xk) ∈ Rdk :

Φ(f1(x1, . . . ,xk) ≥ 0, . . . , ft(x1, . . . ,xk) ≥ 0) = 1},

has the property that

(p1, . . . , pk) ∈ E ⇔ (p1, . . . , pk) ∈ E∗ ⊂ Rdk.



Set Q = P1 × · · · × Pk−1, and let G = (Q,Pk, E)
be the bipartite semi-algebraic graph with relation E.
Just as above, we let φ : Rd → Rm denote the Veronese
mapping. Then for (p1, . . . , pk−1) ∈ Q, each surface
fi(p1, . . . , pk−1,x) = 0 in Rd will correspond to a
hyperplane f∗i (p1, . . . , pk−1,y) = 0 in Rm, 1 ≤ i ≤ t.
By Lemma 2.2, there are subsets Q′ ⊂ Q and P ′k ⊂ Pk
such that

|Q′| ≥ ε

8
|Q| and |P ′k| ≥

εm+1

tm214m log(m+1)
|Pk|,

and Q′ × P ′k ⊂ E. Moreover there is a relatively open
simplex ∆ ⊂ Rm such that φ(P ′k) = ∆ ∩ φ(Pk), and for
any (k − 1)-tuple (p1, . . . , pk−1) ∈ Q′, all t hyperplanes
f∗i (p1, . . . , pk−1,y) = 0, 1 ≤ i ≤ t, do not cross ∆. Let
p∗1, . . . , p

∗
` ∈ Rm be the vertices of ∆, where ` ≤ m+ 1.

We define H1 = (P \ Pk, E1) to be the (k − 1)-
partite semi-algebraic hypergraph in d-space on the
point set P1 ∪ · · · ∪ Pk−1 with relation E1 ⊂ P1 ×
· · · × Pk−1, where (p1, . . . , pk−1) ∈ E1 if and only if
(p1, . . . , pk−1, q) ∈ E for all q ∈ P ′k, and all t hyperplanes
f∗i (p1, . . . , pk−1,y) = 0 in Rm, 1 ≤ i ≤ t, do not cross
∆.

Next we need to check that the complexity of E1

is not too high. In order to do this, we define relations
E2, E3 ⊂ P1×· · ·×Pk−1 as follows. Fix a point q ∈ P ′k,
and let

E2 = {(p1, . . . , pk−1) ∈ P1 × · · · × Pk−1 :

(p1, . . . , pk−1, q) ∈ E}.

Since the relation E has complexity (t,D), the relation
E2 is semi-algebraic with complexity (t,D).

We define the relation E3 ⊂ P1× · · · ×Pk−1, where
(p1, . . . , pk−1) ∈ E3 if and only if all t hyperplanes
f∗i (p1, . . . , pk−1,y) = 0, 1 ≤ i ≤ t, do not cross ∆ in
Rm. Notice that a hyperplane does not cross ∆ in Rm
if and only if the vertices p∗1, . . . , p

∗
` of ∆ all lie in a

closed half-space defined by the hyperplane (recall that
∆ is relatively open). Therefore, for each vertex p∗j of
the simplex ∆, we define t (dk− d)-variate polynomials

gi,j(x1, . . . ,xk−1) = f∗i (x1, . . . ,xk−1, p
∗
j ).

Then there is a Boolean formula Φ3 such that the
semi-algebraic set

E∗3 = {(x1, . . . ,xk−1) ∈ Rd(k−1) :

Φ3(g1,1(x1, . . . ,xk−1) ≥ 0, . . . , gt,`(x1, . . . ,xk−1) ≥ 0)}

has the property that (p1, . . . , pk−1) ∈ E3 if and only if
(p1, . . . , pk−1) ∈ E∗3 ⊂ Rd(k−1), and E3 has complexity
(t`,D). Notice that if (p1, . . . , pk−1) ∈ E3, then by
Observation 2.1, the sign pattern of fi(p1, . . . , pk−1, q)
does not change over all q ∈ P ′k since φ(P ′k) ⊂ ∆.
Therefore, if we also have (p1, . . . , pk−1) ∈ E2, this
implies (p1, . . . , pk−1) ∈ E1. That is,

(p1, . . . , pk−1) ∈ E1 ⇔

(p1, . . . , pk−1) ∈ E∗1 = E∗2 ∩ E∗3 ⊂ Rd(k−1),

and E1 has complexity (t+ t`,D). Since ` ≤ m+ 1, E1

has complexity (t(m+2), D). By construction of Q′, we
have

|E1| ≥ |Q′| ≥
ε

8
|P1| · · · |Pk−1|.

By applying induction hypothesis on the (k−1)-partite
semi-algebraic hypergraph H1 = (P \Pk, E1), we obtain
subsets P ′i ⊂ Pi, 1 ≤ i ≤ k− 1, such that |P ′i | is at least

(ε/8)m+1

8(k−1)(m+1)(t(m+ 2))m(m+ 2)(k−1)m214m log(m+1)
|Pi|

≥ εm+1

8k(m+1)tm(m+ 2)km214m log(m+1)
|Pi|,

and P ′1 × · · · × P ′k−1 ⊂ E1. By definition of E1 and by
construction of P ′k, we have P ′1× · · ·×P ′k ⊂ E, and this
completes the proof. �

3 Applications of Corollary 1.1.

In this section, we give three applications of Corollary
1.1.

3.1 Same-type lemma Proof of Theorem 1.3. Let
P1, . . . , Pk be finite point sets in Rd such that P = P1 ∪
· · · ∪ Pk is in general position. By a result of Goodman
and Pollack (see [23] and [22]), the number of different
order-types of k-element point sets in d dimensions is at
most kO(d2k). By the pigeonhole principle, there is an
order-type π such that at least

k−O(d2k)|P1| · · · |Pk|

k-tuples (p1, . . . , pk) ∈ (P1, . . . , Pk) have order-type π.
We define the relation E ⊂ P1 × · · · × Pk, where
(p1, .., pk) ∈ E if and only if (p1, .., pk) has order-type
π. Next we need to check that the complexity of E is
not too high.

We can check to see if (p1, . . . , pk) has order-type
π by simply checking the orientation of every (d +
1)-tuple of (p1, . . . , pk). More specifically, for xi =
(xi,1, . . . , xi,d), we define the (d2+d)-variate polynomial



f(x1, . . . ,xd+1) = det


1 1 · · · 1
x1,1 x2,1 · · · xd+1,1

...
...

...
...

x1,d x2,d · · · xd+1,d

 .

Then there exists a Boolean formula Φ, such that the
semi-algebraic set

E∗ = {(x1, . . . ,xk) ∈ Rdk :

Φ({f(xi1 , . . . ,xid+1
) ≥ 0}1≤i1<···<id+1≤k) = 1},

which is defined by the
(
k
d+1

)
polynomials

f(xi1 , . . . ,xid+1
), 1 ≤ i1 < · · · < id+1 ≤ k, has

the property that

(p1, . . . , pk) ∈ E ⇔ (p1, . . . , pk) ∈ E∗.

Hence the complexity of E is
((

k
d+1

)
, 1
)

. Therefore

we can apply Corollary 1.1 to the k-partite semi-
algebraic hypergraph H = (P,E) with ε = k−O(d2k)

and t =
(
k
d+1

)
to obtain subsets P ′1 ⊂ P1, . . . , P

′
k ⊂ Pk

such that (P ′1, . . . , P
′
k) has same-type transversals (each

transversal has order-type π), and

|P ′i | ≥ 2−O(d3k log k)|Pi|,

for 1 ≤ i ≤ k. �

3.2 A Tverberg-type result The proof of Theorem
1.5 requires the following due to Karasev [29] (see also
Theorem 4 in [32]).

Lemma 3.1. ([29]) Let P1, . . . , Pd+1 ⊂ Rd be disjoint
n-element point sets with P1 ∪ · · · ∪ Pd+1 in general
position. Then there is a point q ∈ Rd which is
contained in the interior of at least

1

(d+ 1)!
nd+1

rainbow simplices, where a rainbow simplex is a simplex
generated by selecting one point from each Pi.

Proof of Theorem 1.5. We may assume n = 2Ω(d2 log d)

as otherwise we can take pi ∈ Pi, P ′i = {pi}, and q to
be any point in the simplex with vertices p1, . . . , pd+1.

Let P1, . . . , Pd+1 be disjoint n-element point sets
with P1∪· · ·∪Pd+1 in general position. If a simplex has
one vertex in each Pi, then we call it rainbow. Hence
the number of rainbow simplices is N = nd+1.

By Lemma 3.1, there is a point q contained in the
interior of at least

1

(d+ 1)!
nd+1

rainbow simplices.
We define H = (P,E) to be the (d + 1)-partite

semi-algebraic hypergraph, where P = P1 ∪ · · · ∪ Pd+1,
E ⊂ P1 × · · · × Pd+1, where (p1, . . . , pd+1) ∈ E if and
only if q ∈ conv(p1 ∪ · · · ∪ pd+1). Next we need to check
that the complexity of E is not too high.

To see if q ∈ conv(p1 ∪ · · · ∪ pd+1), we just
need to check that the points q and pj lie on the
same side of the hyperplane spanned by the d-tuple
(p1, . . . , pj−1, pj+1, . . . , pd+1), for each 1 ≤ j ≤ d + 1.
More specifically, for xi = (xi,1, . . . , xi,d), we define the
(d2 + d)-variate polynomial

f(x1, . . . ,xd+1) = det


1 1 · · · 1
x1,1 x2,1 · · · xd+1,1

...
...

...
...

x1,d x2,d · · · xd+1,d

 .

Then there exists a Boolean formula Φ such that the
semi-algebraic set

E∗ =
{

(x1, . . . ,xd+1) ∈ Rd(d+1) : 1 ≤ j ≤ d+ 1

Φ

({
f(x1, . . . ,xj−1,xj+1, . . . ,xd+1, q) ≥ 0,
f(x1, . . . ,xj−1,xj+1, . . . ,xd+1,xj) ≥ 0

})
= 1

}
,

satisfies

(p1, .., pd+1) ∈ E ⇔ (p1, . . . , pd+1) ∈ E∗.

Hence E has complexity (2(d+ 1), 1), and

|E| ≥ 1

(d+ 1)!
|P1| · · · |Pd+1|.

Hence we can apply Corollary 1.1 to H = (P,E) with
ε = 1/(d + 1)! and t = 2(d + 1), to obtain subsets
P ′1 ⊂ P1, . . . , P

′
d+1 ⊂ Pd+1 such that

|P ′i | ≥ 2−O(d2 log(d+1))|Pi|,

such that all closed simplices with one vertex from each
P ′i contains q. �

4 Regularity lemma for semi-algebraic
hypergraphs

In this section, we will prove Theorem 4.1. First we
recall the definition of a semi-algebraic set in Rd. A
set A ⊂ Rd is semi-algebraic if there are polynomials



f1, f2, . . . , ft ∈ R[x1, . . . , xd] and a Boolean function Φ
such that

A =
{
x ∈ Rd : Φ(f1(x) ≥ 0, . . . , ft(x) ≥ 0) = 1

}
.

We say that a semi-algebraic set in d-space has descrip-
tion complexity at most κ if the number of inequalities
is at most κ, and each polynomial fi has degree at most
κ. By setting ε = 1/2 in Theorem 1.1, we obtain the
following Ramsey-type result due to Fox, Gromov et al.,
see also Bukh and Hubard for another proof.

Lemma 4.1. (Theorem 18 in [11]) Let H = (P,E)
be a k-partite semi-algebraic hypergraph in d-space,
where P = P1 ∪ · · · ∪ Pk, E ⊂ P1 × · · · × Pk, and E has
complexity (t,D). Then there exists a δ = δ(k, d, t,D)
and subsets P ′1 ⊂ P1, . . . , P

′
k ⊂ Pk such that for 1 ≤ i ≤

k,

|P ′i | ≥ δ|Pi|,

and (P ′1, . . . , P
′
k) is homogeneous, i.e., either complete

or empty. Moreover, there are semi-algebraic sets
∆1, . . . ,∆k ⊂ Rd such that ∆i has complexity κ, where
κ = κ(d, t,D), and P ′i = Pi ∩∆i for all i.

While the above lemma in [19] and [11] does not ex-
plicitly state that the constructed P ′i is the intersection
of Pi with a semi-algebraic set of low complexity, the
proof is easily seen to give this.

We note that Theorem 18 in [11] and Theorem 8.1 in
[19] does not include the statement that there are semi-
algebraic sets ∆1, . . . ,∆k ⊂ Rd such that P ′i = Pi ∩∆i

for all i. However their proof, as well as the proof
of Theorem 1.1 in Section 2, shows that such semi-
algebraic sets exist.

We will first prove the following variant of Theorem
1.2, from which Theorem 1.2 quickly follows.

Theorem 4.1. For any ε > 0, the vertex set of any
semi-algebraic k-uniform hypergraph H = (P,E) in d-
space with complexity (t,D), can be partitioned into
K ≤ (1/ε)c parts P = P1 ∪ · · · ∪ PK , where c =
c(k, d, t,D), such that∑ |Pj1 | · · · |Pjk |

|P |k
≤ ε,

where the sum is taken over all k-tuples (j1, . . . , jk) such
that (Pj1 , . . . , Pjk) is not homogeneous.

Proof. Let ε > 0 and H = (P,E) be an n-vertex
k-uniform semi-algebraic hypergraph with complexity
(t,D) in d-space. For integer r ≥ 0, we will recursively

define a partition Pr on P k = P × · · · × P into at
most 2kr parts of the form X1 × · · · × Xk, such that
at most (1− δk)r|P |k k-tuples (p1, . . . , pk) lie in a part
X1 × · · · × Xk with the property that (X1, . . . , Xk) is
not homogeneous. Note that δ is defined in Lemma
4.1. Also for each r ≥ 0, we will inductively define
a collection Fr of semi-algebraic sets, each set with
complexity at most c = c(d, t,D), such that |Fr| ≤∑r
j=0 2kj , and for each part X1 × · · · ×Xk in Pr, there

are subcollections S1, . . . ,Sk ⊂ Fr such that

Xi =

( ⋂
∆∈Si

∆

)
∩ P.

Note that c = c(d, t,D) is defined in Lemma 4.1. Given
such a partition Pr, a k-tuple (p1, . . . , pk) ∈ P ×· · ·×P
is called bad if (p1, . . . , pk) lies in a part X1 × · · · ×Xk

in Pr, for which (X1, . . . , Xk) is not homogeneous.
We start with P0 = {P × · · · × P} and F0 = {Rd},

which satisfies the base case r = 0. After obtaining
Pi and Fi, we define Pi+1 and Fi+1 as follows. Let
X1 × · · · × Xk be a part in the partition Pi. Then if
(X1, . . . , Xk) is homogeneous, we put X1 × · · · × Xk

in Pi+1. If (X1, . . . , Xk) is not homogeneous, then
notice that (X1, . . . , Xk) gives rise to |X1| · · · |Xk| bad
k-tuples (p1, . . . , pk). Hence we apply Lemma 4.1 on
(X1, . . . , Xk) to obtain subsets X ′1 ⊂ X1,. . . ,X ′k ⊂ Xk

and semi-algebraic sets ∆1, ....,∆k with the properties
described above. Then we partition X1 × · · · ×Xk into
2k parts Z1 × · · · × Zk where Zi ∈ {X ′i, Xi \ X ′i} for
1 ≤ i ≤ k, and put these parts into Pi+1. The collection
Fi+1 will consist of all semi-algebraic sets from Fi, plus
all semi-algebraic sets ∆1, . . . ,∆k,Rd \∆1, . . . ,Rd \∆k

that was obtained after applying Lemma 4.1 to each
part X1 × · · · ×Xk in Pr for which (X1, . . . , Xk) is not
homogeneous.

By the induction hypothesis, the number of bad k-
tuples (p1, . . . , pk) in Pi+1 is at most

(1− δk)(1− δk)i|P |k = (1− δk)i+1|P |k.

The number of parts in Pi+1 is at most 2k ·2ki = 2k(i+1),
and |Fi+1| ≤ |Fi|+ 2k|Pi| ≤ |Fi|+ 2k(i+1) ≤

∑i+1
j=0 2kj .

By the induction hypothesis, for any part X1×· · ·×Xk

in Pi+1 such that X1 × · · · × Xk was also in Pi, there
are subcollections S1, . . . ,Sk ⊂ Fi such that

Xi =

( ⋂
∆∈Si

∆

)
∩ P,

for 1 ≤ i ≤ k. If X1 × · · · × Xk is not in Pi, then
there must be a part Y1 × · · · × Yk in Pi, such that
X1 × · · · × Xk is one of the 2k parts obtained from



applying Lemma 4.1 to Y1×· · ·×Yk. Hence, Xi ⊂ Yi for
1 ≤ i ≤ k. Let ∆1, . . . ,∆k be the semi-algebraic sets
obtained when applying Lemma 4.1 to Y1 × · · · × Yk.
By the induction hypothesis, we know that there are
subcollections S1, . . . ,Sk ⊂ Fi such that

Yi =

( ⋂
∆∈Si

∆

)
∩ P,

for 1 ≤ i ≤ k. Hence, there are subcollections S ′i ⊂
Si ∪ {∆i,Rd \∆i} such that

Xi =

 ⋂
∆∈S′

i

∆

 ∩ P,
for 1 ≤ i ≤ k. We have therefore obtained our desired
partition Pi+1 on P × · · · × P , and collection Fi+1 of
semi-algebraic sets.

At step r = log ε
log(1−δk)

, there are at most ε|P |k bad

k-tuples (p1, . . . , pk) in partition Pr. The number of
parts of Pr is at most (1/ε)c1 and |Fr| ≤ (1/ε)c2 , where
c1 = c1(k, d, t,D) and c2 = c2(k, d, t,D) (recall that
δ = δ(k, d, t,D)).

Finally, we partition the vertex set P into K parts,
P1, P2, . . . , PK , such that two vertices are in the same
part if and only if every member of Fr contains both or
neither of them. Since Fr consists of at most (1/ε)c2

semi-algebraic sets, and each set has complexity at
most c = c(k, d, t,D), we have K ≤ (1/ε)c3 where
c3 = c3(k, d, t,D) (see Theorem 6.2.1 in [33]). Now we
just need to show that∑

|Pj1 | · · · |Pjk | < ε|P |k,

where the sum is taken over all k-tuples (j1, . . . , jk),
1 ≤ j1 < · · · < jk ≤ K, such that (Pj1 , . . . , Pjk) is
not homogeneous. It suffices to show that for a k-tuple
(j1, . . . , jk), if (Pj1 , . . . , Pjk) is not homogeneous, then
all k-tuples (p1, . . . , pk) ∈ Pj1 × · · · ×Pjk are bad in the
partition Pr.

For the sake of contradiction, suppose (Pj1 , . . . , Pjk)
is not homogeneous, and the k-tuple (p1, . . . , pk) ∈
Pj1 × · · · × Pjk is not a bad k-tuple. Then there is a
part X1×· · ·×Xk in the partition Pr such that pi ∈ Xi

for all i, and (X1, . . . , Xk) is homogeneous. Hence there
are subcollections S1, . . . ,Sk ⊂ Fr such that

Xi =

( ⋂
∆∈Si

∆

)
∩ P,

for 1 ≤ i ≤ k. However, by construction of Pj1 , . . . , Pjk ,
this implies that Pji ⊂ Xi for all i, and we have a
contradiction. Therefore, we have obtained our desired
partition P1, P2, . . . , PK .

Proof of Theorem 1.2. Apply Theorem 4.1 with ap-
proximation parameter ε/2. So there is a partition
Q : P = Q1 ∪ · · · ∪ QK′ into K ′ ≤ (2/ε)c parts, where
c = c(k, d, t,D), such that

∑
|Qi1 ||Qi2 | · · · |Qik | ≤

(ε/2)|P |k, where the sum is taken over all k-tuples
(i1, . . . , ik) such that (Qi1 , . . . , Qik) is not homogeneous.

Let K = 4kε−1K ′. Partition each part Qi into
parts of size |P |/K and possibly one additional part
of size less than |P |/K. Collect these additional parts
and divide them into parts of size |P |/K to obtain an
equitable partition P : P = P1 ∪ · · · ∪ PK into K parts.
The number of vertices of P which are in parts Pi that
are not contained in a part of Q is at most K ′|P |/K.
Hence, the fraction of k-tuples Pi1 × · · · × Pik and not
all Pi1 , . . . , Pik are subsets of parts of Q is at most
kK ′/K = ε/4. As ε/2 + ε/4 < ε, we obtain that less
than an ε-fraction of the k-tuples of parts of P are not
homogeneous, which completes the proof. �

5 Property testing in semi-algebraic
hypergraphs

The goal of property testing is to quickly distinguish
between objects that satisfy a property from objects
that are far from satisfying that property. This is an
active area of computer science which was initiated by
Rubinfeld and Sudan [40]. Subsequently, Goldreich,
Goldwasser, and Ron [21] started the investigation of
property testers for combinatorial objects.

Graph property testing in particular has attracted
a great deal of attention. A property P is a family of
graphs closed under isomorphism. A graph G with n
vertices is ε-far from satisfying P if one must add or
delete at least εn2 edges in order to turn G into a graph
satisfying P.

Let F be a family of graphs. An ε-tester for P
with respect to F is a randomized algorithm, which
given n and the ability to check whether there is an
edge between a given pair of vertices, distinguishes with
probability at least 2/3 between the cases G satisfies P
and G is ε-far from satisfying P, for every G ∈ F . Such
an ε-tester is one-sided if, whenever G ∈ F satisfies
P, the ε-tester determines this with probability 1. A
property P is strongly testable with respect to F if for
every fixed ε > 0 there exists a one-sided ε-tester for P
with respect to F whose query complexity is bounded
only by a function of ε, which is independent of the size
of the input graph.

Property P is easily testable with respect to F if it is
strongly testable with a one-sided ε-tester whose query
complexity is polynomial in ε−1, and otherwise call P
hard with respect to F . In classical complexity theory,
an algorithm whose running time is polynomial in the
input size is considered fast, and otherwise slow. This



provides a nice analogue of polynomial time algorithms
for property testing.

A very general result in graph property testing of
Alon and Shapira [6] states that every hereditary family
P of graphs is strongly testable. Unfortunately, the
bounds on the query complexity this proof give are quite
enormous. They are based on the strong regularity
lemma, which gives wowzer-type bounds.3 Even the
recently improved bound by Conlon and Fox [15] still
gives a tower-type bound.4 Also, it is known that many
properties are not easily testable (see [1, 2, 4]). The
result of Alon and Shapira was extended to hypergraphs
by Rödl and Schacht [39]; see also the work of Austin
and Tao [7]. These give even worse, Ackermann-type
bounds.

Here we give an application of the quantitative
semi-algebraic regularity lemma, Theorem 1.2, to show
how to easily test (typical) hereditary properties with
respect to semi-algebraic graphs of constant description
complexity. This gives yet another example of how semi-
algebraic graphs are more nicely behaved then general
graphs. We further prove hypergraph variants of this
result.

In the first subsection, we prove the simplest case,
that of testing monotone hypergraph properties. We
then discuss and prove a result about easily testing
hereditary properties of graphs. We then conclude with
a discussion and proof of a result on easily testing
hypergraph hereditary properties. All hypergraphs we
consider in this section are assumed to be k-uniform.

5.1 Testing monotone properties Let P be a
monotone property of hypergraphs, andH be the family
of minimal forbidden hypergraphs for P. That is H ∈ H
if H 6∈ P, but every proper subhypergraph of H is in P.
We say that a hypergraph H has a homomorphism to
another hypergraph R, and write H → R, if there is a
mapping f : V (H) → V (R) such that every edge of H
maps to an edge of R.

We let Hr denote the family of hypergraphs R on
at most r vertices for which there is a graph H ∈ H
with H → R. Define

Ψ1(H, r) = max
R∈Hr

min
H∈H,H→R

|V (H)|.

3Define the tower function T (1) = 2 and T (i + 1) = 2T (i).

Then the wowzer function is defined as W (1) = 2 and W (i+1) =
T (W (i)).

4In addition to the dependence on the approximation param-

eter ε, there is also a dependence on the property being tested

that can make it arbitrarily hard to test [6]. However, such prop-
erties appear to be pathological and the standard properties that
are studied should have only a weak dependence on the property

being tested.

The following result implies that we can easily
test every monotone property P whose corresponding
function Ψ1(H, r) grows at most polynomially in r. A
simple example in which Ψ1(H, r) is constant is the case
that the property P is H-freeness for a fixed graph H,
i.e., P is the family of k-uniform hypergraphs which do
not contain H as a subgraph.

Theorem 5.1. Let P be a monotone property of hyper-
graphs, and H be the family of minimal forbidden hyper-
graphs for P. Within the family A of semi-algebraic hy-
pergraphs in d-space with description complexity (t,D),
the property P can be ε-tested with vertex query com-
plexity at most 8rΨ1(H, r), where r = (1/ε)c with
c = c(k, d, t,D) is the number of parts in the algebraic
regularity lemma for hypergraphs as in Theorem 1.2.

Proof. Let s = Ψ1(H, r) and v = 8rs. Consider
the tester which samples v vertices from a hypergraph
A ∈ A. It accepts if the induced subhypergraph on
these v vertices has property P and rejects otherwise.
It suffices to show that if A ∈ A is ε-far from satisfying
P, then with probability at least 2/3, the tester will
reject.

Consider an equitable partition Q : V (A) = V1 ∪
. . . ∪ Vr′ of the vertex set of A guaranteed by Theorem
1.2 such that all but at most an ε-fraction of the k-
tuples of parts are homogeneous. Let r′ = |Q| be the
number of parts of the partition, so r′ ≤ r. Delete
all edges of A whose vertices go between parts which
are not complete. By the almost homogeneous property
of the partition, at most an ε-fraction of the edges are
deleted. Let A′ denote the resulting subhypergraph of
A. As P is monotone, if A ∈ P, then A′ ∈ P. Let R
be the hypergraph on [r′], one for each part of Q, and a
k-tuple (i1, . . . , ik) of vertices of R forms an edge if and
only if the corresponding k-tuple Vi1 , . . . , Vik of parts
are complete in A′ (and hence in A as well). If R 6∈ Hr,
then every hypergraph which has a homomorphism to
R is in P and hence A′ ∈ P. However, at most an ε-
fraction of the k-tuples are deleted from A to obtain A′,
and so A is not ε-far from satisfying P, contradicting
the assumption. Hence, R ∈ Hr. Since R ∈ Hr,
there is a hypergraph H ∈ H on at most s = Ψ1(H, r)
vertices with H → R. Consider such a homomorphism
f : V (H)→ V (R), and let ai = |f−1(i)|. If the sampled
v vertices contains at least ai vertices in Vi for each i,
then H is a subgraph of the sampled vertices and hence
the sampled vertices does not have property P.

So we need to estimate the probability of the event
that the sampled v vertices contains ai vertices in Vi
for each i. For a particular i, the probability that the
sampled v vertices contains fewer than a = ai vertices



in Vi is 0 if a = 0 and is otherwise

a−1∑
j=0

(
|Vi|
j

)(
|V (A)| − |Vi|

v − j

)
/

(
|V (A)|
v

)

< (1/r′)a(1− 1/r′)v−a
(
v

a

)
= (r′ − 1)−a(1− 1/r′)v

(
v

a

)
< (r′ − 1)−ae−v/r

′
(ve/a)a

= (r′ − 1)−ae−8s(2r′se/a)a

< e−8s(20s/a)a < 1/(4s),

where in the last inequality we use that a < s. Taking
the union bound and summing over all i, the probability
that the sampled v vertices does not contain ai vertices
in Vi for at least one i is at most s×1/(4s) = 1/4. This
completes the proof.

5.2 Testing hereditary properties of graphs We
next state and prove a result which shows that heredi-
tary properties of graphs are easily testable within semi-
algebraic graphs. For a graph H and a graph R on [r′]
with loops, there is an induced homomorphism from H
to R, and we write H →ind R, if there is a mapping
f : V (H) → V (R) which maps edges of H to edges
of R, and every nonadjacent pair of distinct vertices of
H gets mapped to a nonadjacent pair in R. We write
H 6→ind R if H →ind R does not hold.

Let P = P1 ∪ . . . ∪ Pr′ be a vertex partition of a
semi-algebraic graph G. A key observation is that if we
round G by the partition P and the graph R with loops
to obtain a graph G′ on the same vertex set as G by
adding edges to make Pi, Pj complete if (i, j) is an edge
of R, and deleting edges to make Pi, Pj empty if (i, j)
is not an edge of R and we have that H 6→ind R, then
G′ does not contain H as an induced subgraph.

Let P be a hereditary graph property, and H be
the family of minimal (induced) forbidden graphs for
P. That is, each H ∈ H satisfies H 6∈ P, but every
proper induced subgraph H ′ of H satisfies H ′ ∈ P. For
a nonnegative integer r, let Hr be the family of graphs
R on at most r vertices for which there is at least one
H ∈ H such that H →ind R. As long asHr is nonempty,
define

Ψ2(H, r) = max
R∈Hr

min
H∈H:H→indR

|V (H)|.

If Hr is empty, then we define Ψ2(H, r) = 1. Note that
Ψ2(H, r) is a monotonically increasing function of r.

We now state our main result for testing hereditary
properties of graphs within semi-algebraic graphs. It

implies that, if Ψ2(H, r) is at most polynomial in r, then
P can be easily tested within the semi-algebraic graphs
of constant description complexity, i.e., there is an ε-
tester with vertex query complexity ε−O(1). A simple
example in which Ψ2(H, r) is constant is the case that
the property P is the family of graphs which are induced
H-free for some fixed graph H.

Theorem 5.2. Let P be a hereditary property of
graphs, and H be the family of minimal forbidden graphs
for P. Within the family A of semi-algebraic graphs in
d-space with description complexity (t,D), the property
P can be ε-tested with vertex query complexity at most
(rΨ2(H, r))C , where r = (1/ε)C with C = C(d, t,D).

We show how this theorem follows from apply-
ing the following “strong regularity lemma” for semi-
algebraic graphs.

Theorem 5.3. For any 0 < α, ε < 1/2, any semi-
algebraic graph H = (P,E) in d-space with complexity
(t,D) has an equitable vertex partition P = P1∪· · ·∪Pr′
with r′ ≤ (1/ε)c

′
with c′ = c′(d, t,D) such that all

but an ε-fraction of the pairs Pi, Pj are homogeneous.
Furthermore, there are subsets Qi ⊂ Pi such that each
pair Qi, Qj with i 6= j is complete or empty, and each
Qi has density at most α or at least 1 − α. Moreover,
|Qi| ≥ δ|P | with δ = (αε)−c with c = c(d, t,D).

We next prove Theorem 5.2 assuming Theorem 5.3.
The rest of the subsection is then devoted to proving
Theorem 5.3.
Proof of Theorem 5.2: Let s = Ψ2(H, r) and v = (rs)C

for an appropriate constant C = C(d, t,D). Consider
the tester which samples v vertices from a graph A =
(P,E) ∈ A. It accepts if the induced subgraph on these
v vertices has property P and rejects otherwise. It
suffices to show that if A ∈ A is ε-far from satisfying
P, then with probability at least 2/3, the tester will
reject.

Consider an equitable partition P = P1 ∪ . . . ∪ Pr′
with r′ ≤ r = (1/ε)c

′
of the vertex set of A guaranteed

by Theorem 5.3 such that all but at most an ε-fraction
of the pairs of parts are homogeneous, and, with α =
1/(10rs2), subsets Qi ⊂ Pi such that each pair Qi, Qj
with i 6= j is complete or empty, and each Qi has density
at most α or at least 1 − α, with |Qi| ≥ δ|P | with
δ = (αε)−c. with c = c(d, t,D). Let R be the graph
on [r′] with loops where (i, j) is an edge of R if and
only if Qi, Qj is complete to each other. Round A by R
to obtain another graph A′. That is, A′ has the same
vertex set as A, and we delete the edges between Pi
and Pj if (i, j) is not an edge of R and add all possible
edges between Pi and Pj if (i, j) is an edge of R. The



resulting graph A′ is homogeneous between each pairs
of parts and at most an ε-fraction of the pairs of vertices
were added or deleted as edges from A to obtain A′.

If R 6∈ Hr, then every graph which has a homomor-
phism to R is in P and hence A′ ∈ P. However, at
most an ε-fraction of the pairs were added or deleted
from A to obtain A′, and so A is not ε-far from satis-
fying P, contradicting the assumption. Hence, R ∈ Hr,
and there is a graph H ∈ H on at most s = Ψ2(H, r)
vertices with H →ind R. Consider such an induced ho-
momorphism f : V (H) → V (R), and let ai = |f−1(i)|.
If the sampled v vertices contains at least ai vertices
in Qi for each i, and these ai vertices form a clique if
(i, i) is a loop in R and otherwise these ai vertices form
an independent set, then H is an induced subgraph of
the sampled vertices and hence the subgraph induced
by the sampled vertices does not have property P.

We first estimate the probability of the event that
the sampled v vertices contains ai vertices in Qi for each
i. For a particular i, the probability that the sampled
v vertices contains fewer than a = ai vertices in Qi is 0
if a = 0 and is otherwise

a−1∑
j=0

(
|Qi|
j

)(
|V (A)| − |Qi|

v − j

)
/

(
|V (A)|
v

)

< (1− δ)v−a
(
v

a

)
< e−δv/2va < 1/(8s),

where we used that a < s and v can be chosen so that
v > 10(s/δ)2. Taking the union bound and summing
over all i, the probability that the sampled v vertices
does not contain ai vertices in Qi for some i is at most
s× 1/(8s) = 1/8.

We now condition on the event that we have at
least ai vertices chosen from Qi. The probability that
these ai vertices form a clique if (i, i) is a loop and an
independent set if (i, i) is not a loop is at most

(
ai
2

)
α.

Summing over each i, the probability that, for each i,
the ai vertices in Qi forms a clique if (i, i) is a loop and
an independent set if (i, i) is not a loop, is at least

1−
∑
i

(
ai
2

)
α ≥ 1−

(
s

2

)
α ≥ 7/8.

Hence, with probability at least 3/4, the induced sub-
graph on the sampled s vertices has the desired proper-
ties, which completes the proof. �

Our goal for the rest of the subsection is to prove
Theorem 5.3. We first prove a Ramsey-type lemma
which follows from the regularity lemma which says that
semi-algebraic graphs contain large balanced t-partite
subgraphs which are complete or empty.

Lemma 5.1. For each d, t,D there is c = c(d, t,D) such
that the following holds. For any positive integer h,
any semi-algebraic graph G = (P,E) in d-space with
complexity (t,D) has subsets A1, . . . , Ah with |A1| =
· · · = |Ah| ≥ h−c|P | and either each pair Ai, Aj with
i 6= j is complete or none of these pairs are.

Proof. For h = 1 the result is trivial by taking A1 = P
so we may assume h ≥ 2. It is shown in [3] that
every induced subgraph of G on hC vertices contains
a clique or independent set of order h. Applying
Theorem 1.2 with ε = 1

2hC , we obtain an equitable

partition with ε−O(1) parts such that all but at most
a 1

2hC -fraction of the pairs of parts are homogeneous.
Applying Turán’s theorem, we obtain hC parts which
are pairwise homogeneous. Picking one vertex from each
of these parts, we can obtain an induced subgraph with
h vertices which is complete or empty. The parts these
vertices come from (after possibly deleting a vertex from
some parts to guarantee they have the same size) have
the desired properties.

We get the following strengthening of our quantita-
tive semi-algebraic regularity lemma via three applica-
tions of Theorem 1.2.
Proof of Theorem 5.3: We will apply Theorem 1.2
three times. We first apply Theorem 1.2 to get the
partition P = P1 ∪ · · · ∪ PK with K = ε−O(1) with
the implied constant depending on d, t,D such that all
but an ε-fraction of the pairs Pi, Pj are homogeneous.
We apply Theorem 1.2 again (or rather its proof) to
get a refinement with approximation parameter ε′ =
Ω(1/K4), so that all but an ε′-fraction of the pairs of
parts are homogeneous. Thus, a random choice of parts
W1, . . . ,WK of parts of this refinement with Wi ⊂ Pi
has with positive probability the property that Wi,Wj

is homogeneous for i 6= j. From Lemma 5.1 applied to
the subgraph induced by Wi for each i with h = 2/α, we
obtain subsets Qi ⊂Wi such that each Qi is a complete
or empty balanced h-partite graph, so that the density
in Qi is at most α or at least 1−α. This completes the
proof. �

5.3 Testing hereditary properties of hyper-
graphs We next state and prove the hereditary prop-
erty testing result within semi-hypergraphs.

Let R be a k-uniform hypergraph with vertex
set [r′], and B be a blow-up of R with vertex sets
V1, . . . , Vr′ . That is, B is a k-uniform hypergraph on
V1 ∪ . . . ∪ Vr′ , where (v1, . . . , vk) ∈ (Vi1 , . . . , Vik) is
an edge if and only if (i1, . . . , ik) form an edge of R.
An extension of B (with respect to V1, . . . , Vr′) is any
hypergraph on V1∪ . . .∪Vr′ which agrees with B on the
k-tuples with vertices in distinct Vi.



For a hypergraph H, we say that R is extendable H-
free if each blow-up of R has an extension which contains
no induced copy of H. For a family H of hypergraphs,
we say that R is extendable H-free if each blow-up of R
has an extension which contains no induced H ∈ H.

For a hypergraph property P we say that R strongly
has property P if every blow-up of R has an extension
which has property P. Otherwise, there is a least
s = s(P, R) and vertex sets V1, . . . , Vr′ with r′ ≤ r
and s(P, R) = |V1| + · · · + |Vr′ | such that no extension
of the blow-up B of R with vertex sets V1, . . . , Vr′ has
property P.

Define Ψ3(P, r) to be the maximum of s(P, R) over
all R with at most r vertices which does not strongly
have property P.

Our next theorem gives a hereditary property test-
ing result for semi-algebraic hypergraphs. It implies
that, if Ψ3(H, r) is at most polynomial in r, then P can
be easily tested within the semi-algebraic hypergraphs
of constant description complexity, i.e., there is an ε-
tester with vertex query complexity ε−O(1). A simple
example in which Ψ3(H, r) is constant is the case that
the property P is the family of hypergraphs which are
induced H-free for some fixed hypergraph H.

Theorem 5.4. Let P be a hereditary property of hy-
pergraphs. Within the family A of semi-algebraic k-
uniform hypergraphs in d-space with description com-
plexity (t,D), the property P can be ε-tested with ver-
tex query complexity at most rCΨ3(H, r)2, where r =
(1/ε)C with C = C(d, t,D).

We will need the following polynomial strong regularity
lemma for semi-algebraic hypergraphs.

Lemma 5.2. For any 0 < α, ε < 1/2, any semi-
algebraic k-uniform hypergraph H = (P,E) in d-space
with complexity (t,D) has an equitable vertex partition
P = P1∪· · ·∪Pr′ such that all but an ε-fraction of the k-
tuples of distinct parts are homogeneous. Furthermore,
there are subsets Qi ⊂ Pi for each i such that each k-
tuple of distinct parts is homogeneous and |Qi| ≥ δ|P |
with δ = ε−c with c = c(k, d, t,D).

Proof. The proof follows the graph case as in Theorem
5.3 and involves two applications of Theorem 1.2. We
first apply Theorem 1.2 to get the partition P = P1 ∪
· · · ∪ PK with K = ε−O(1) with the implied constant
depending on k, d, t,D such that all but an ε-fraction of
the pairs Pi, Pj are homogeneous. We apply Theorem
1.2 again (or rather its proof) to get a refinement with
approximation parameter ε′ = Ω(1/K4), so that all but
an ε′-fraction of the pairs of parts are homogeneous.
Thus, a random choice of parts Q1, . . . , QK of parts

of this refinement with Qi ⊂ Pi has with positive
probability the property that each k-tuple Qi1 , . . . , Qik
of distinct parts is homogeneous. This completes the
proof.

Proof of Theorem 5.4: Let s = Ψ3(P, r) and v = (rs)C

for an appropriate constant C = C(k, d, t,D). Consider
the tester which samples v vertices from a graph A =
(P,E) ∈ A. It accepts if the induced subgraph on these
v vertices has property P and rejects otherwise. It
suffices to show that if A ∈ A is ε-far from satisfying
P, then with probability at least 2/3, the tester will
reject.

Consider an equitable partition P = P1 ∪ . . . ∪ Pr′
of the vertex set of A guaranteed by Theorem 5.2 such
that all but at most an ε-fraction of the pairs of parts
are homogeneous, and subsets Qi ⊂ Pi such that each
k-tuple of distinct Qi is homogeneous, and with |Qi| ≥
δ|P | for each i with δ = ε−c. with c = c(k, d, t,D).
Let R be the k-uniform hypergraph on [r′] where a k-
tuple (i1, . . . , ik) of distinct vertices forms an edge if
and only if Qi1 , . . . , Qik is complete. If R strongly has
property P, then A is ε-close to a hypergraph which
has property P, and hence the algorithm accepts in
this case. So we may assume that R does not strongly
have property P and thus there are sets V1, . . . , Vr′

with |V1| + · · · + |Vr′ | = s(P, R) ≤ Ψ3(P, r) = s
such that every extension of the blow-up of R with
parts V1, . . . , Vr′ does not have property P. Thus, if
among the v sample vertices, we get, for each i, at
least |Vi| vertices in Qi, then the induced subgraph on
the sampled vertices does not have property P and the
algorithm rejects. Thus, it suffices to show that with
probability at least 2/3, we get at least |Vi| vertices in
each Qi. However, this is the computation we already
did in the proof of Theorem 5.2. It suffices, for example,
that v > 10(s/δ)2, and we can take v to satisfy this. �
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[8] I. Bárány and J. Pach, Homogeneous selections from
hyperplanes, submitted.
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[17] P. Erdős, On extremal problems of graphs and general-
ized graphs, Israel J. Math., 2 (1965), pp. 183–190.
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[38] V. Rödl and M. Schacht, Property testing in hyper-
graphs and the removal lemma, Proceedings of the 39th
Annual ACM Symposium on Theory of Computing
(STOC 2007), ACM, New York, 2007, pp. 488–495.
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