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Abstract

A graph drawn in the plane is called k-quasi-planar if it does not contain k pairwise crossing
edges. It has been conjectured for a long time that for every fixed k, the maximum number
of edges of a k-quasi-planar graph with n vertices is O(n). The best known upper bound is
n(log n)O(log k). In the present note, we improve this bound to (n log n)2α(n)

ck in the special
case where the graph is drawn in such a way that every pair of edges meet at most once. Here
α(n) denotes the (extremely slowly growing) inverse of the Ackermann function. We also make
further progress on the conjecture for k-quasi-planar graphs in which every edge is drawn as
an x-monotone curve. Extending some ideas of Valtr, we prove that the maximum number of
edges of such graphs is at most 2ck

6

n log n.

1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are represented by points
and its edges are represented by non-self-intersecting arcs connecting the corresponding points. In
notation and terminology, we make no distinction between the vertices and edges of a graph and
the points and arcs representing them, respectively. No edge is allowed to pass through any point
representing a vertex other than its endpoints. Any two edges can intersect only in a finite number
of points. Tangencies between the edges are not allowed. That is, if two edges share an interior
point, then they must properly cross at this point. A topological graph is simple if every pair of
its edges intersect at most once: at a common endpoint or at a proper crossing. If the edges of a
graph are drawn as straight-line segments, then the graph is called geometric.

Finding the maximum number of edges in a topological graph with a forbidden crossing pattern
is a fundamental problem in extremal topological graph theory (see [2, 3, 4, 6, 10, 12, 16, 21, 23]).
It follows from Euler’s Polyhedral Formula that every topological graph on n vertices and with no
two crossing edges has at most 3n − 6 edges. A graph is called k-quasi-planar if it can be drawn
as a topological graph with no k pairwise crossing edges. A graph is 2-quasi-planar if and only
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if it is planar. According to an old conjecture (see Problem 1 in Section 9.6 of [5]), for any fixed
k ≥ 2 there exists a constant ck such that every k-quasi-planar graph on n vertices has at most
ckn edges. Agarwal, Aronov, Pach, Pollack, and Sharir [4] were the first to prove this conjecture
for simple 3-quasi-planar graphs. Later, Pach, Radoičić, and Tóth [17] generalized the result to all
3-quasi-planar graphs. Ackerman [1] proved the conjecture for k = 4.

For larger values of k, first Pach, Shahrokhi, and Szegedy [18] showed that every simple k-
quasi-planar graph on n vertices has at most ckn(log n)2k−4 edges. For k ≥ 3 and for all (not
necessarily simple) k-quasi-planar graphs, Pach, Radoičić, and Tóth [17] established the upper
bound ckn(log n)4k−12. Plugging into these proofs the above mentioned result of Ackerman [1], for
k ≥ 4, we obtain the slightly better bounds ckn(log n)2k−8 and ckn(log n)4k−16, respectively. For
large values of k, the exponent of the polylogarithmic factor in these bounds was improved by Fox
and Pach [10], who showed that the maximum number of edges of a k-quasi-planar graph on n
vertices is n(log n)O(log k).

For the number of edges of geometric graphs, that is, graphs drawn by straight-line edges, Valtr
[22] proved the upper bound O(n log n). He also extended this result to simple topological graphs
whose edges are drawn as x-monotone curves [23].

The aim of this paper is to improve the best known bound, n(log n)O(log k), on the number of
edges of a k-quasi-planar graph in two special cases: for simple topological graphs and for not
necessarily simple topological graphs whose edges are drawn as x-monotone curves. In both cases,
we improve the exponent of the polylogarithmic factor from O(log k) to 1 + o(1).

Theorem 1.1. Let G = (V,E) be a k-quasi-planar simple topological graph with n vertices. Then
|E(G)| ≤ (n log n)2α(n)

ck , where α(n) denotes the inverse of the Ackermann function and ck is a
constant that depends only on k.

Recall that the Ackermann (more precisely, the Ackermann-Péter) function A(n) is defined as
follows. Let A1(n) = 2n, and Ak(n) = Ak−1(Ak(n − 1)) for k = 2, 3, . . .. In particular, we have
A2(n) = 2n, and A3(n) is an exponential tower of n two’s. Now let A(n) = An(n), and let α(n) be
defined as α(n) = min{k ≥ 1 : A(k) ≥ n}. This function grows much slower than the inverse of
any primitive recursive function.

Theorem 1.2. Let G = (V,E) be a k-quasi-planar (not necessarily simple) topological graph with
n vertices, whose edges are drawn as x-monotone curves. Then |E(G)| ≤ 2ck

6
n log n, where c is an

absolute constant.

In both proofs, we follow the approach of Valtr [23] and apply results on generalized Davenport-
Schinzel sequences. An important new ingredient of the proof of Theorem 1.1 is a corollary of a
separator theorem established in [9] and developed in [8]. Theorem 1.2 is not only more general
than Valtr’s result, which applies only to simple topological graphs, but its proof gives a somewhat
better upper bound: we use a result of Pettie [20], which improves the dependence on k from double
exponential to single exponential.

2 Generalized Davenport-Schinzel Sequences

The sequence u = a1, a2, ..., am is called l-regular if any l consecutive terms are pairwise different.
For integers l, t ≥ 2, the sequence

S = s1, s2, ..., slt
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of length lt is said to be of type up(l, t) if the first l terms are pairwise different and

si = si+l = si+2l = · · · = si+(t−1)l

for every i, 1 ≤ i ≤ l. For example,

a, b, c, a, b, c, a, b, c, a, b, c,

is a type up(3, 4) sequence or, in short, an up(3, 4) sequence. We need the following theorem of
Klazar [13] on generalized Davenport-Schinzel sequences.

Theorem 2.1 (Klazar). For l ≥ 2 and t ≥ 3, the length of any l-regular sequence over an n-element
alphabet that does not contain a subsequence of type up(l, t) has length at most

n · l2(lt−3) · (10l)10α(n)
lt
.

For l ≥ 2, the sequence

S = s1, s2, ..., s3l−2

of length 3l − 2 is said to be of type up-down-up(l) if the first l terms are pairwise different and

si = s2l−i = s(2l−2)+i

for every i, 1 ≤ i ≤ l. For example,

a, b, c, d, c, b, a, b, c, d,

is an up-down-up(4) sequence. Valtr and Klazar [14] showed that any l-regular sequence over an
n-element alphabet, which contains no subsequence of type up-down-up(l), has length at most 2l

c
n

for some constant c. This has been improved by Pettie [20], who proved the following.

Lemma 2.2 (Pettie). For l ≥ 2, the length of any l-regular sequence over an n-element alphabet,
which contains no subsequence of type up-down-up(l), has length at most 2O(l2)n.

For more results on generalized Davenport-Schinzel sequences, see [15, 20, 19].

3 On intersection graphs of curves

In this section, we prove a useful lemma on intersection graphs of curves. It shows that every
collection C of curves, no two of which intersect many times, contains a large subcollection C ′ such
that in the partition of C ′ into its connected components C1, . . . , Ct in the intersection graph of C,
each component Ci has a vertex connected to all other |Ci| − 1 vertices.

For a graph G = (V,E), a subset V0 of the vertex set is said to be a separator if there is a
partition V = V0 ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2

3 |V | such that no edge connects a vertex in V1 to a
vertex in V2. We need the following separator lemma for intersection graphs of curves, established
in [9].

Lemma 3.1 (Fox–Pach). There is an absolute constant c1 such that every collection C of curves
with x intersection points has a separator of size at most c1

√
x.

3



Call a collection C of curves in the plane decomposable if there is a partition C = C1 ∪ . . . ∪Ct
such that each Ci contains a curve which intersects all other curves in Ci, and for i 6= j, the curves
in Ci are disjoint from the curves in Cj . The following lemma is a strengthening of Proposition
6.3 in [8]. Its proof is essentially the same as that of the original statement. It is include here, for
completeness.

Lemma 3.2. There is an absolute constant c > 0 such that every collection C of m ≥ 2 curves
such that each pair of them intersect in at most t points has a decomposable subcollection of size at
least cm

t logm .

Proof of Lemma 3.2 We prove the following stronger statement. There is an absolute constant
c > 0 such that every collection C of m ≥ 2 curves whose intersection graph has at least x edges,
and each pair of curves intersect in at most t points, has a decomposable subcollection of size at
least cm

t logm + x
m . Let c = 1

576c21
, where c1 ≥ 1 is the constant in Lemma 3.1. The proof is by

induction on m, noting that all collections of curves with at most three elements are decomposable.
Define d = d(m,x, t) := cm

t logm + x
m .

Let ∆ denote the maximum degree of the intersection graph of C. We have ∆ < d − 1.
Otherwise, the subcollection consisting of a curve of maximum degree, together with the curves in
C that intersect it, is decomposable and its size is at least d, and we are done. Also, ∆ ≥ 2 x

m , since
2 x
m is the average degree of the vertices in the intersection graph of C. Hence, if ∆ ≥ 2 cm

t logm , then
the desired inequality holds. Thus, we may assume ∆ < 2 cm

t logm .
Applying Lemma 3.1 to the intersection graph of C, we obtain that there is a separator V0 ⊂ C

with |V0| ≤ c1
√
tx, where c1 is the absolute constant in Lemma 3.1. That is, there is a partition

C = V0 ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2|V |/3 such that no curve in V1 intersects any curve in V2. For
i = 1, 2, let mi = |Vi| and xi denote the number of pairs of curves in Vi that intersect, so that

x1 + x2 ≥ x−∆|V0| ≥ x− 2
cm

t logm
c1
√
tx. (1)

As no curve in V1 intersects any curve in V2, the union of a decomposable subcollection of V1 and a
decomposable subcollection of V2 is decomposable. Thus, by the induction hypothesis, C contains
decomposable subcollection of size at least

d(m1, x1, t) + d(m2, x2, t) =
cm1

t logm1
+
x1
m1

+
cm2

t logm2
+
x2
m2

≥ c(m1 +m2)

t log(2m/3)
+

(x1 + x2)

2m/3
.

We split the rest of the proof into two cases.

Case 1. x ≥ t−1
(

12c1c
m

logm

)2
. In this case, by (1), we have x1 + x2 ≥ 5

6x and hence there is a

decomposable subcollection of size at least

d(m1, x1, t) + d(m2, x2, t) ≥
c(m1 +m2)

t logm
+

5x

4m
= d+

x

4m
− c(m− (m1 +m2))

t logm

≥ d+
x

4m
− c1c

√
tx

t logm
> d,

completing the analysis.
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Case 2. x < t−1
(

12c1c
m

logm

)2
. There is a decomposable subcollection of size at least

d(m1, x1, t) + d(m2, x2, t) ≥
c(m1 +m2)

t log(2m/3)
≥ c

t

(
m− c1

√
tx
)( 1

logm
+

1

2 log2m

)
≥ c

t

(
m

logm
+

m

2 log2m
− 2c1

√
tx

logm

)
≥ c

t

(
m

logm
+

m

4 log2m

)
≥ c

t

(
m

logm
+

m

4 log2m

)
≥ cm

t logm
+
x

m
= d,

where we used c = 1
4(12c1)2

= 1
576c21

. �

4 Simple Topological Graphs

In this section, we prove Theorem 1.1. The following statement will be crucial for our purposes.

Lemma 4.1. Let G = (V,E) be a k-quasi-planar simple topological graph with n vertices. Suppose

that G has an edge that crosses every other edge. Then we have |E| ≤ n · 2α(n)
c′k , where α(n)

denotes the inverse Ackermann function and c′k is a constant that depends only on k.

Proof of Lemma 4.1. Let k ≥ 5 and c′k = 40 · 2k2+2k. To simplify the presentation, we do
not make any attempt to optimize the value of c′k. Label the vertices of G from 1 to n, i.e.,
let V = {1, 2, . . . , n}. Let e = uv be the edge that crosses every other edge in G. Note that
d(u) = d(v) = 1.

Let E′ denote the set of edges that cross e. Suppose without loss of generality that no two
of elements of E′ cross e at the same point. Let e1, e2, ..., e|E′| denote the edges in E′ listed in
the order of their intersection points with e from u to v. We create two sequences of vertices
S1 = p1, p2, ..., p|E′| and S2 = q1, q2, ..., q|E′| ⊂ V , as follows. For each ei ∈ E′, as we move along
edge e from u to v and arrive at the intersection point with ei, we turn left and move along edge ei
until we reach its endpoint ui. Then we set pi = ui. Likewise, as we move along edge e from u to
v and arrive at edge ei, we turn right and move along edge ei until we reach its other endpoint wi.
Then we set qi = wi. Thus, S1 and S2 are sequences of length |E′| over the alphabet {1, 2, ..., n}.
See Figure 1 for a small example.

We need two lemmas. The first one is due to Valtr [23].

Lemma 4.2 (Valtr). For l ≥ 1, at least one of the sequences S1, S2 defined above contains an
l-regular subsequence of length at least |E′|/(4l). �

Since each edge in E′ crosses e exactly once, the proof of Lemma 4.2 can be copied almost
verbatim from the proof of Lemma 4 in [23]. Indeed, the only fact about the sequences S1 and S2
it uses is that the edges ej1 , ej1+1, ..., ej2 are spanned by the vertices pj1 , ..., pj2 and qj1 , ..., qj2 , for
each pair j1 < j2.

For the rest of this section, we set l = 2k
2+k and t = 2k.

Lemma 4.3. Neither of the sequences S1 and S2 has a subsequence of type up(l, t).

Proof. By symmetry, it suffices to show that S1 does not contain a subsequence of type up(l, t).
The argument is by contradiction. We will prove by induction on k that the existence of such a

5



�
�
�
�

��
��
��
��

�
�
�
�

����
����

��
��
��
��

�
�
�
�

v4
v3

v2

v5v1

v

u

Figure 1: In this example, S1 = v1, v3, v4, v3, v2 and S2 = v2, v2, v1, v5, v5.

sequence would imply that G has k pairwise crossing edges. The base cases k = 1, 2 are trivial.
Now assume the statement holds up to k − 1. Let

S = s1, s2, ..., slt

be our up(l, t) sequence of length lt such that the first l terms are pairwise distinct and for i =
1, 2, ..., l we have

si = si+l = si+2l = si+3l = · · · = si+(t−1)l.

For each i = 1, 2, ..., l, let vi ∈ V denote the vertex si. Moreover, let ai,j be the arc emanating from
vertex vi to the edge e corresponding to si+jl for j = 0, 1, 2, ..., t − 1. We will think of si+jl as a
point on ai,j very close but not on edge e. For simplicity, we will let slt+q = sq for all q ∈ N and
ai,j = ai,j′ for all j ∈ Z, where j′ ∈ {0, 1, 2, . . . , t− 1} is such that j ≡ j′ (mod t). Hence there are
l distinct vertices v1, ..., vl, each vertex of which has t arcs emanating from it to the edge e.

Consider the arrangement formed by the t arcs emanating from v1 and the edge e. Since G is
simple, these arcs partition the plane into t regions. By the pigeonhole principle, there is a subset
V ′ ⊂ {v1, ..., vl} of size

l − 1

t
=

2k
2+k − 1

2k

such that all of the vertices of V ′ lie in the same region. Let j0 ∈ {0, 1, 2, ..., t − 1} be an integer
such that V ′ lies in the region bounded by a1,j0 , a1,j0+1, and e. See Figure 2. In the case j0 = t− 1,
the set V ′ lies in the unbounded region.

Let vi ∈ V ′ and ai,j0+j1 be an arc emanating from vi for j1 ≥ 1. Notice that ai,j0+j1 cannot
cross both a1,j0 and a1,j0+1. Indeed, as ai,j0+j1 can cross each of a1,j0 and a1,j0+1 at most once, had
it crossed both of them, its endpoint s1,j0+j1 would be in the shaded region on Figure 2. Suppose
that ai,j0+j1 crosses a1,j0+1. Then all arcs emanating from vi,

A = {ai,j0+1, ai,j0+2, ..., ai,j0+j1−1}

must also cross a1,j0+1. Indeed, let γ be the simple closed curve created by the arrangement
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Figure 2: Vertices of V ′ lie in the region enclosed by a1,j0 , a1,j0+1, e.

ai,j0+j1 ∪ a1,j0+1 ∪ e.

Since ai,j0+j1 , a1,j0+1, and e pairwise intersect at precisely one point, γ is well defined. We define
points x = ai,j0+j1 ∩ a1,j0+1 and y = a1,j0+1 ∩ e, and orient γ in the direction from x to y along γ.

In view of the fact that ai,j0+j1 intersects a1,j0+1, the vertex vi must lie to the right of γ.
Moreover, since the arc from x to y along a1,j0+1 is a subset of γ, the points corresponding to the
subsequence

S′ = {sq ∈ S | 2 + (j0 + 1)l ≤ q ≤ (i− 1) + (j0 + j1)l}

must lie to the left of γ. Hence, γ separates vertex vi and the points of S′. Therefore, using again
that G is simple, each arc from A must cross a1,j0+1 (these arcs cannot cross ai,j0+j1). See Figure 3.

By the same argument, if the arc ai,j0−j1 crosses a1,j0 for j1 ≥ 1, then the arcs emanating from
vi,

ai,j0−1, ai,j0−2, ..., ai,j0−j1+1

must also cross a1,j0 . Since ai,j0+t/2 = ai,j0−t/2, we have the following observation.

Observation 4.4. For half of the vertices vi ∈ V ′, the arcs emanating from vi satisfy

1. ai,j0+1, ai,j0+2, ..., ai,j0+t/2 all cross a1,j0+1, or

2. ai,j0−1, ai,j0−2, ..., ai,j0−t/2 all cross a1,j0.

Since t/2 = 2k−1 and

|V ′|
2
≥ l − 1

2t
=

2k
2+k − 1

2 · 2k
≥ 2(k−1)

2+(k−1),

by Observation 4.4, we obtain a up(2(k−1)
2+(k−1), 2k−1) sequence such that the corresponding arcs

all cross either a1,j0 or a1,j0+1. By the induction hypothesis, it follows that there exist k pairwise
crossing edges. �

Now we are ready to complete the proof of Lemma 4.1. By Lemma 4.2 we know that, say,
S1 contains an l-regular subsequence of length |E′|/(4l). By Theorem 2.1 and Lemma 4.3, this
subsequence has length at most
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Figure 3: Defining γ and its orientation.

n · l2(lt−3) · (10l)10α(n)
lt
.

Therefore, we have

|E′|
4 · l
≤ n · l2(lt−3) · (10l)10α(n)

lt
,

which implies

|E′| ≤ 4 · n · l22(lt−3) · (10l)10α(n)
lt
.

Since c′k = 40 · lt = 40 · 2k2+2k, α(n) ≥ 2 and k ≥ 5, we have

|E| = |E′|+ 1 ≤ n · 2α(n)
c′k ,

which completes the proof of Lemma 4.1. �

Now we are in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. Let G = (V,E) be a k-quasi-planar simple topological graph on n
vertices. By Lemma 3.2, there is a subset E′ ⊂ E such that |E′| ≥ c|E|/ log |E|, where c is an
absolute constant and E′ is decomposable. Hence, there is a partition

E′ = E1 ∪ E2 ∪ · · · ∪ Et
such that each Ei has an edge ei that intersects every other edge in Ei, and for i 6= j, the edges in
Ei are disjoint from the edges in Ej . Let Vi denote the set of vertices that are the endpoints of the
edges in Ei, and let ni = |Vi|. By Lemma 4.1, we have

|Ei| ≤ ni2α(ni)
c′k + 2ni,

where the 2ni term accounts for the edges that share a vertex with ei. Hence,

c|E|
log |E|

≤
t∑
i=1

ni2
α(ni)

c′k + 2ni ≤ n2α(n)
c′k + 2n,

Therefore, we obtain

|E| ≤ (n log n)2α(n)
ck ,

for a sufficiently large constant ck. �

5 x-Monotone Topological Graphs

The aim of this section is to prove Theorem 1.2.

Proof of Theorem 1.2. For k ≥ 2, let gk(n) be the maximum number of edges in a k-quasi-planar
topological graph whose edges are drawn as x-monotone curves. We will prove by induction on n
that

gk(n) ≤ 2ck
6
n log n

where c is a sufficiently large absolute constant.
The base case is trivial. For the inductive step, let G = (V,E) be a k-quasi-planar topological

graph whose edges are drawn as x-monotone curves, and let the vertices be labeled 1, 2, ..., n. Let
L be a vertical line that partitions the vertices into two parts, V1 and V2, such that |V1| = bn/2c
vertices lie to the left of L, and |V2| = dn/2e vertices lie to the right of L. Furthermore, let E1

denote the set of edges induced by V1, let E2 denote the set of edges induced by V2, and let E′ be
the set of edges that intersect L. Clearly, we have

|E1| ≤ gk(bn/2c) and |E2| ≤ gk(dn/2e).

It suffices that show that

|E′| ≤ 2ck
6/2n, (2)

since this would imply

gk(n) ≤ gk(bn/2c) + gk(dn/2e) + 2ck
6/2n ≤ 2ck

6
n log n.
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In the rest of the proof, we only consider the edges belonging to E′. For each vertex vi ∈ V1,
consider the graph Gi whose vertices are the edges with vi as a left endpoint, and two vertices
in Gi are adjacent if the corresponding edges cross at some point to the left of L. Since Gi is
an incomparability graph (see [7], [11]) and does not contain a clique of size k, Gi contains an
independent set of size |E(Gi)|/(k − 1). We keep all edges that correspond to the elements of this
independent set, and discard all other edges incident to vi. After repeating this process for all
vertices in V1, we are left with at least |E′|/(k − 1) edges.

Now we continue this process on the other side. For each vertex vj ∈ V2, consider the graph Gj
whose vertices are the edges with vj as a right endpoint, and two vertices in Gj are adjacent if the
corresponding edges cross at some point to the right of L. Since Gj is an incomparability graph
and does not contain a clique of size k, Gj contains an independent set of size |E(Gj)|/(k− 1). We
keep all edges that corresponds to this independent set, and discard all other edges incident to vj .
After repeating this process for all vertices in V2, we are left with at least |E′|/(k − 1)2 edges.

We order the remaining edges e1, e2, ..., em in the order in which they intersect L from bottom
to top. (We assume without loss of generality that any two intersection points are distinct.) Define
two sequences, S1 = p1, p2, ..., pm and S2 = q1, q2, ..., qm, such that pi denotes the left endpoint of
edge ei and qi denotes the right endpoint of ei. We need the following lemma.

Lemma 5.1. Neither of the sequences S1 and S2 has subsequence of type up-down-up(k3 + 2).

Proof. By symmetry, it suffices to show that S1 does not have a subsequence of type up-down-
up(k3 + 2). Suppose for contradiction that S1 does contain such a subsequence. Then there is a
sequence

S = s1, s2, ..., s3(k3+2)−2

such that the integers s1, ..., sk3+2 are pairwise distinct and

si = s2(k3+2)−i = s2(k3+2)−2+i

for i = 1, 2, ..., k3 + 2.
For each i ∈ {1, 2, ..., k3 + 2}, let vi ∈ V1 denote the label (vertex) of si and let xi denote the

x-coordinate of the vertex vi. Moreover, let ai be the arc emanating from vertex vi to the point on L
that corresponds to s2(k3+2)−i. Let A = {a2, a3, ..., ak3+1}. Note that the arcs in A are enumerated
downwards with respect to their intersection points with L, and they correspond to the elements
of the “middle” section of the up-down-up sequence. We define two partial orders on A as follows.

ai ≺1 aj if i < j, xi < xj and the arcs ai, aj do not intersect,

ai ≺2 aj if i < j, xi > xj and the arcs ai, aj do not intersect.

Clearly, ≺1 and ≺2 are partial orders. If two arcs are not comparable by either ≺1 or ≺2, then
they cross. Since G does not contain k pairwise crossing edges, by Dilworth’s theorem [7], there
exist k arcs {ai1 , ai2 , ..., aik} such that they are pairwise comparable by either ≺1 or ≺2. Now the
proof falls into two cases.

Case 1. Suppose that ai1 ≺1 ai2 ≺1 · · · ≺1 aik . Then the arcs emanating from vi1 , vi2 , ..., vik to
the points corresponding to s2(k3+2)−2+i1 , s2(k3+2)−2+i2 , ..., s2(k3+2)−2+ik are pairwise crossing. See
Figure 4.
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Figure 4: Case 1 of Lemma 5.1.

Case 2. Suppose that ai1 ≺2 ai2 ≺2 · · · ≺2 aik . Then the arcs emanating from vi1 , vi2 , ..., vik to the
points corresponding to si1 , si2 , ..., sik are pairwise crossing. See Figure 5.
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Figure 5: Case 2.

�

We are now ready to complete the proof of Theorem 1.2. By Lemma 4.2, we know that, S1,
say, contains a (k3 + 2)-regular subsequence of length

|E′|
4(k3 + 2)(k − 1)2

.

11



By Lemmas 2.2 and 5.1, this subsequence has length at most 2c
′k6n, where c′ is an absolute constant.

Hence, we have

|E′|
4(k3 + 2)(k − 1)2

≤ 2c
′k6n,

which implies that

|E′| ≤ 4k52c
′k6n ≤ 2ck

6/2n

for a sufficiently large absolute constant c. �
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[16] J. Pach, R. Pinchasi, M. Sharir, and G. Tóth, Topological Graphs with No Large Grids. Graphs
& Comb. 21 (2005), 355–364.
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