HOMOGENEOUS SELECTIONS FROM HYPERPLANES

IMRE BÁRÁNY AND JÁNOS PACH

Abstract

Given $d+1$ hyperplanes h_{1}, \ldots, h_{d+1} in general position in \mathbb{R}^{d}, let $\triangle\left(h_{1}, \ldots, h_{d+1}\right)$ denote the unique bounded simplex enclosed by them. There exists a constant $c(d)>0$ such that for any finite families H_{1}, \ldots, H_{d+1} of hyperplanes in \mathbb{R}^{d}, there are subfamilies $H_{i}^{*} \subset H_{i}$ with $\left|H_{i}^{*}\right| \geq c(d)\left|H_{i}\right|$ and a point $p \in \mathbb{R}^{d}$ with the property that $p \in \triangle\left(h_{1}, \ldots, h_{d+1}\right)$ for all $h_{i} \in H_{i}^{*}$.

1. The main result

Throughout this paper, let H_{1}, \ldots, H_{d+1} be finite families of hyperplanes in \mathbb{R}^{d} in general position. That is, we assume that (1) no element of $\cup_{i=1}^{d+1} H_{i}$ passes through the origin, (2) any d elements have precisely one point in common, and (3) no $d+1$ of them have a nonempty intersection. A transversal to these families is an ordered $(d+1)$-tuple $h=\left(h_{1}, \ldots, h_{d+1}\right) \in \prod_{i=1}^{d+1} H_{i}$, where $h_{i} \in H_{i}$ for every i.

Given hyperplanes $h_{1}, \ldots, h_{d+1} \subset \mathbb{R}^{d}$ in general position in \mathbb{R}^{d}, there is a unique simplex denoted by $\triangle=\triangle\left(h_{1}, \ldots, h_{d+1}\right)$ whose boundary is contained in $\cup_{1}^{d+1} h_{i}$. Clearly, this simplex is identical to the convex hull of the points

$$
\begin{equation*}
v_{i}=\bigcap_{j \neq i} h_{j}, \quad i \in[d+1] \tag{1.1}
\end{equation*}
$$

where, as in the sequel, $[n]$ stands for the set $\{1,2, \ldots, n\}$.
Our main result is the following.
Theorem 1.1. For every $d \geq 1$ there is a constant $c(d)>0$ with the following property. Given finite families H_{1}, \ldots, H_{d+1} of hyperplanes in \mathbb{R}^{d} in general position, there are subfamilies $H_{i}^{*} \subset H_{i}$ with $\left|H_{i}^{*}\right| \geq$ $c(d)\left|H_{i}\right|$ for $i=1, \ldots, d+1$ and a point $p \in \mathbb{R}^{d}$ such that p is contained in $\triangle(h)$ for every transversal $h \in \prod_{i=1}^{d+1} H_{i}$.

It follows from the general position assumption that the simplices $\triangle(h)$ in Theorem 1.1 also have an interior point in common.

It will be convenient to use the language of hypergraphs. Let $\mathcal{H}=$ $\mathcal{H}\left(H_{1}, \ldots, H_{d+1}\right)$ be the complete $(d+1)$-partite hypergraph with vertex

2000 Mathematics Subject Classification. Primary 52B22.
Key words and phrases. hyperplanes, hypergraphs, intersecting simplices.
classes H_{1}, \ldots, H_{d+1}. We refer to \mathcal{H} as the hyperplane hypergraph, or h hypergraph associated with the hyperplane families H_{1}, \ldots, H_{d+1}. The hyperedges of \mathcal{H} are the transversals of the families H_{1}, \ldots, H_{d+1}. Our main result can now be reformulated as follows.
Theorem 1.2. For every positive integer d, there is a constant $c(d)>0$ with the following property. Every complete $(d+1)$-partite h-hypergraph $\mathcal{H}\left(H_{1}, \ldots, H_{d+1}\right)$ contains a complete $(d+1)$-partite h-subhypergraph $\mathcal{H}^{*}\left(H_{1}^{*}, \ldots, H_{d+1}^{*}\right)$ such that $\left|H_{i}^{*}\right| \geq c(d)\left|H_{i}\right|$ for all $i \in[d+1]$ and $\bigcap_{h \in \mathcal{H}^{*}} \triangle(h) \neq \emptyset$.

In some sense, our theorem extends the following recent and beautiful result of Karasev [7].

Theorem 1.3. [7] Assume r is a prime power and $t \geq 2 r-1$. Let \mathcal{H} be a complete $(d+1)$-partite h-hypergraph with partition classes of size t. Then there are vertex-disjoint hyperedges (transversals) h^{1}, \ldots, h^{r} of \mathcal{H} such that $\bigcap_{j=1}^{r} \triangle\left(h^{j}\right) \neq \emptyset$.

Two hyperedges (transversals) h and h^{\prime} of \mathcal{H} are vertex-disjoint if h_{i} and h_{i}^{\prime} are distinct for each i.

Our Theorem 1.1 implies a weaker version of Karasev's theorem. Namely, the same conclusion holds with arbitrary r and $t \geq r / c(d)$. Since $c(d)$ will turn out to be doubly exponential in d, our result is quantitatively much weaker than the bound $t \geq 4 r$ that follows from Karasev's theorem for any r.

Karasev's result is a kind of dual to Tverberg's famous theorem [10]. In the same sense, our result is dual to the homogeneous point selection theorem of Pach [9] (see also [8]), which guarantees the existence of an absolute constant $c_{d}>0$ with the following property. Let X_{1}, \ldots, X_{d+1} be finite sets of points in general position in \mathbb{R}^{d} with $\left|X_{i}\right|=n$ for every i. Then there exist subsets $X_{i}^{*} \subset X_{i}$ of size at least $c_{d} n$ for every $i \in[d+1]$ and a point $p \in \mathbb{R}^{d}$ such that $p \in \operatorname{conv}\left\{x_{1}, \ldots, x_{d+1}\right\}$ for all transversals $\left(x_{1}, \ldots, x_{d+1}\right) \in \prod_{i+1}^{d+1} X_{i}^{*}$. Here the assumption that the sets X_{i} are of the same size can be removed (see e.g. [5]).

To establish Theorem 1.2, we need some preparation. Let h and h^{\prime} be two edges of the hypergraph $\mathcal{H}=\mathcal{H}\left(H_{1}, \ldots, H_{d+1}\right)$. As in (1.1), let v_{i} (and v_{i}^{\prime}) denote the vertex of $\triangle(h)$ (and $\triangle\left(h^{\prime}\right)$) opposite to the facet contained in h_{i} (and h_{i}^{\prime}, respectively). The edges h and h^{\prime} are said to be of the same type if, for each $i \in[d+1]$, the vertices v_{i} and v_{i}^{\prime} are not separated by either of the hyperplanes h_{i} and h_{i}^{\prime}. We say that the h-hypergraph \mathcal{H} is homogeneous if every pair of its edges is of the same type.

The heart of the proof of Theorem 1.2 is the following "same type lemma" for hyperplanes.
Lemma 1.4. For any $d \geq 1$, there exists a constant $b(d)>0$ with the following property. Every complete $(d+1)$-partite h-hypergraph
$\mathcal{H}\left(H_{1}, \ldots, H_{d+1}\right)$ contains a complete $(d+1)$-partite subhypergraph $\mathcal{H}^{*}\left(H_{1}^{*}, \ldots, H_{d+1}^{*}\right)$ with $\left|H_{i}^{*}\right| \geq b(d)\left|H_{i}\right|$ for all $i \in[d+1]$ which is homogeneous.

The rest of this note is organized as follows. In Section 2, we deduce Theorem 1.2 from Lemma 1.4. In Sections 3 and 4 we present two proofs for Lemma 1.4. The first proof, which provides a better estimate for the value of the constant $b(d)$, uses duality and is based on a same type lemma for points, due to Bárány and Valtr [3] (see also [8]). The second proof is shorter, but it utilizes a far reaching generalization of the same type lemma to semialgebraic relations of several variables, found by Fox, Gromov, Lafforgue, Naor, and Pach [5], see also Bukh and Hubard [4] for a quantitative form. The same result for binary semialgebraic relations was first established by Alon, Pach, Pinchasi, Radoičić, and Sharir [1].

2. Proof of Theorem 1.2

In this section, we deduce Theorem 1.2 from Lemma 1.4. The proof of the lemma is postponed to the last two sections.

Let \mathcal{H}^{*} denote the complete $(d+1)$-partite subhypergraph of \mathcal{H} whose existence is guaranteed by the lemma. For a fixed $h=\left(h_{1}, \ldots, h_{d+1}\right) \in$ \mathcal{H}^{*}, let h_{i}^{+}denote the half-space bounded by h_{i} that contains vertex v_{i} of $\triangle(h)$, for $i \in[d+1]$. The lemma implies that, for every hyperedge $k=\left(k_{1}, \ldots, k_{d+1}\right) \in \mathcal{H}^{*}$ and for every i, the half-space h_{i}^{+}contains the vertex u_{i} of $\triangle(k)$ opposite to hyperplane k_{i}. To prove the theorem, it suffices to establish the following claim.

$$
\bigcap_{h \in \mathcal{H}^{*}} \triangle(h) \neq \emptyset
$$

For $h=\left(h_{1}, \ldots, h_{d+1}\right) \in \mathcal{H}^{*}$, let $\rho(h)$ denote the distance between h_{1} and $v_{1}=\cap_{2}^{d+1} h_{j}$, and let $h^{\prime} \in \mathcal{H}^{*}$ be the edge for which $\rho(h)$ is minimal. By the general position assumption, we have $\rho\left(h^{\prime}\right)>0$. Set $v^{\prime}=\cap_{2}^{d+1} h_{j}^{\prime}$. We show that $v^{\prime} \in \triangle(h)$ for every $h \in \mathcal{H}^{*}$, which implies the claim. To see this, we have to verify that $v^{\prime} \in h_{i}^{+}$for every $h \in \mathcal{H}^{*}$ and for every i.

This is trivial for $i=1$. Suppose that $i \geq 2$. By symmetry, we may assume that $i=d+1$. We have to show that $v^{\prime} \in h_{d+1}^{+}$for every $h_{d+1} \in H_{d+1}^{*}$.

Assume to the contrary that $v^{\prime} \notin h_{d+1}^{+}$for some $h_{d+1} \in H_{d+1}^{*}$. Setting $k=\left(h_{1}^{\prime}, \ldots, h_{d}^{\prime}, h_{d+1}\right)$, we clearly have $k \in \mathcal{H}^{*}$. The simplices $\triangle(k)$ and $\triangle\left(h^{\prime}\right)$ share the vertex $v_{d+1}=\cap_{1}^{d} h_{i}^{\prime}$. As $v_{d+1} \in h_{d+1}^{+}$, by the construction, $v^{\prime} \notin h_{d+1}^{+}$implies that h_{d+1} intersects the segment $\left[v_{d+1}, v^{\prime}\right]$ in a point u in its relative interior, see Figure 1. On the other hand, we know that $u=\cap_{2}^{d+1} k_{i}$ is the vertex of $\triangle(k)$ opposite to $h_{1}=k_{1}$. Thus,

Figure 1. Illustration for Theorem $1.2, d=2$
u is closer to $h_{1}=k_{1}$ than v^{\prime} is. Therefore, we obtain that $\rho(k)<\rho\left(h^{\prime}\right)$, contradicting the definition of h^{\prime}.

It follows from the above proof that Theorems 1.2 and 1.1 hold with $c(d)=b(d)$.

3. A same type lemma for hyperplanes
 -First proof of Lemma 1.4

Before turning to the proof of Lemma 1.4, we need some preparation. A collection of $m \geq d+1$ finite sets of points, $X_{1}, \ldots, X_{m} \subset \mathbb{R}^{d}$, is said to be strongly separated if every hyperplane intersects at most d of the sets conv $X_{i}, i \in[m]$. This property can be rephrased in several equivalent forms; see, e.g., $[6,3,9,8]$.

Proposition 3.1. A collection of finite point sets X_{1}, \ldots, X_{m} in \mathbb{R}^{d} with $m \geq d+1$ is strongly separated if and only if every $d+1$ of them are strongly separated.

Proposition 3.2. A collection of finite sets X_{1}, \ldots, X_{d+1} in \mathbb{R}^{d} is strongly separated if and only if for every subset $I \subset[d+1]$ the sets $\bigcup_{i \in I} X_{i}$ and $\bigcup_{i \in[d+1] \backslash I} X_{i}$ can be strictly separated by a hyperplane.

Two transversals $\left(x_{1}, \ldots, x_{m}\right)$ and $\left(y_{1}, \ldots, y_{m}\right) \in \prod_{i=1}^{m} X_{i}$ are said to be of the same type if the orientations of the simplices conv $\left\{x_{i_{1}}, \ldots, x_{i_{d+1}}\right\}$ and $\operatorname{conv}\left\{y_{i_{1}}, \ldots, y_{i_{d+1}}\right\}$ are the same for all $1 \leq i_{1}<i_{2}<\ldots<i_{d+1} \leq$ m. In other words, the signs of the determinants of the matrices

$$
\left(\begin{array}{cccc}
x_{i_{1}} & x_{i_{2}} & \ldots & x_{i_{d+1}} \\
1 & 1 & \ldots & 1
\end{array}\right) \text { and }\left(\begin{array}{cccc}
y_{i_{1}} & y_{i_{2}} & \ldots & y_{i_{d+1}} \\
1 & 1 & \ldots & 1
\end{array}\right)
$$

are the same.
Proposition 3.3. A collection of finite sets X_{1}, \ldots, X_{m} in \mathbb{R}^{d} with $m \geq d+1$ is strongly separated if and only if every pair of transversals of $X_{i}(i \in[m])$ are of the same type.

As usual, we say that a set of points $X \subset \mathbb{R}^{d}$ is in general position if no $d+1$ elements of X lie on a hyperplane. We need the same type lemma of Bárány and Valtr [3] for points.

Theorem 3.4. [3] For every positive integer d and every $m \geq d+$ 1 , there is a constant $c(d, m)>0$ with the following property. Let X_{1}, \ldots, X_{m} be a collection of pairwise disjoint finite point sets in \mathbb{R}^{d} such that their union is in general position. Then there exist subsets $X_{i}^{*} \subset X_{i}$ with $\left|X_{i}^{*}\right| \geq c(d, m)\left|X_{i}\right|$ for all $i \in[m]$ such that the collection $X_{1}^{*}, \ldots, X_{m}^{*}$ is strongly separated.

Now we turn to the proof of Lemma 1.4. We use the standard duality between points $a \in \mathbb{R}^{d} \backslash\{0\}$ and hyperplanes $h \subset \mathbb{R}^{d}$ with $0 \notin h$. Every hyperplane not passing through the origin 0 is of the form

$$
\begin{equation*}
h=\left\{x \in \mathbb{R}^{d}: a \cdot x=1\right\}, \tag{3.1}
\end{equation*}
$$

with a unique $a \in \mathbb{R}^{d} \backslash\{0\}$. Conversely, every $a \in \mathbb{R}^{d} \backslash\{0\}$ gives rise to a unique hyperplane h via (3.1). By the general position assumption, no element of $\cup_{i=1}^{d+1} H_{i}$ passes through the origin. For any $i \in[d+1]$, let A_{i} denote the set of points dual to the hyperplanes in H_{i} via the standard duality (3.1).

Applying Theorem 3.4 to the sets $A_{0}=\{0\}, A_{1}, \ldots, A_{d+1}$, we obtain a collection of subsets $A_{0}^{*}=\{0\}, A_{1}^{*} \subset A_{1}, \ldots, A_{d+1}^{*} \subset A_{d+1}$ with $\left|A_{i}^{*}\right| \geq$ $c(d, d+2)\left|A_{i}\right|$ for all $i \in[d+1]$ such that all $(d+2)$-transversals of them are of the same type. The sets of hyperplanes dual to the elements of $A_{1}^{*}, \ldots, A_{d+1}^{*}$, denoted by $H_{1}^{*}, \ldots, H_{d+1}^{*}$, form a complete $(d+1)$ partite h-hypergraph $\mathcal{H}^{*}\left(H_{1}^{*}, \ldots, H_{d+1}^{*}\right)$, which is a subhypergraph of the original hypergraph \mathcal{H}.

Claim 3.5. The h-hypergraph \mathcal{H}^{*} is homogeneous.
Proof. We show that, given $h_{i} \in H_{i}^{*}$ and $h_{j}, k_{j} \in H_{j}^{*}$ (where $j \neq i$), h_{i} does not separate the points $v=\cap_{j \neq i} h_{j}$ and $u=\cap_{j \neq i} k_{j}$. By symmetry, it suffices to prove this in the case $i=d+1$.

Consider the simplices $\triangle_{0}=\triangle\left(h_{1}, \ldots, h_{d+1}\right), \triangle_{1}=\triangle\left(k_{1}, h_{2}, \ldots, h_{d+1}\right)$, $\triangle_{2}=\triangle\left(k_{1}, k_{2}, h_{3}, \ldots, h_{d+1}\right), \ldots, \triangle_{d}=\triangle\left(k_{1}, \ldots, k_{d}, h_{d+1}\right)$. Let u_{i} be

Figure 2. Illustration for Claim 3.5, case $d=2$
the vertex opposite to h_{d+1} in \triangle_{i}. We have $u_{0}=v$ and $u_{d}=u$. Obviously, it is sufficient to verify that h_{d+1} does not separate u_{i-1} and u_{i} for $i \in[d]$, see Figure 2 .

Again, by symmetry, it is enough to consider the case $i=1$. Assume that h_{1} and k_{1} are given by the equations $a_{1} \cdot x=1$ and $a_{1}^{\prime} \cdot x=1$, respectively. Set $a(t)=(1-t) a_{1}+t a_{1}^{\prime}$ for $t \in[0,1]$ and let $h(t)$ be the hyperplane with equation $a(t) \cdot x=1$, and let $\triangle(t)$ be the corresponding simplex (if it exists, which is not entirely clear at the moment) with vertex $u(t)$ opposite to h_{d+1}.

We move h_{1} to k_{1} by the homotopy $h(t)$ and check how $u(t)$ behaves. The common vertex of \triangle_{0} and \triangle_{1} is $z=\cap_{2}^{d+1} h_{i}$. The segment [z, u_{0}] is an edge of \triangle_{0}. We define the half-line $L=\left\{z+\lambda\left(u_{0}-z\right): \lambda>0\right\}$.

We will show that $h(t) \cap L$ is a single point for every $t \in[0,1]$. This will complete the proof, because $h(0) \cap L=u_{0}, h(1) \cap L=u_{1}$, and L lies completely on one side of h_{d+1}. Suppose the contrary and let $T \in[0,1]$ be the smallest $t \in[0,1]$ such that for all $\tau \in[0, t), h(\tau) \cap L$ is a single point but $h(t) \cap L$ is not. (General position implies that $T>0$.) This can happen in two different ways: either $h(T)$ contains z or $h(T)$ becomes parallel to L.

Case 1: $z \in h(T)$. Then the equations

$$
a(T) \cdot x=1, \quad a_{2} \cdot x=1, \ldots, \quad a_{d+1} \cdot x=1
$$

have a common solution, namely z. The points $a(T) \in \operatorname{conv} A_{1}^{*}, a_{2} \in$ $A_{2}^{*}, \ldots, a_{d+1} \in \operatorname{conv} A_{d+1}^{*}$ lie on the same hyperplane, namely on $\{x$: $x \cdot z=1\}$. But this is impossible, as $A_{1}^{*}, \ldots, A_{d+1}^{*}$ satisfy Theorem 3.4.

Case 2. $h(T)$ is parallel to L or, equivalently, to $u_{0}-z$. Then $u_{0}-z$ is a solution of the equations

$$
a(T) \cdot x=0, \quad a_{2} \cdot x=0, \ldots, \quad a_{d} \cdot x=0
$$

and also to $a_{0} \cdot x=0$ where $a_{0}=0$. Therefore, the points $a_{0} \in$ $A_{0}^{*}, a(T) \in \operatorname{conv} A_{1}^{*}, \ldots, a_{d} \in \operatorname{conv} A_{d}^{*}$ lie on the same hyperplane, namely on the one with equation $x \cdot\left(u_{0}-z\right)=0$. This is again impossible.

In view of the above arguments, in Lemma 1.4 and in Theorems 1.1,1.2, one can take $c(d)=b(d)=c(d, d+2)=2^{-(d+1) 2^{d}}$, where $c(d, d+2)$ comes from Theorem 3.4.

4. Semi-algebraic relations

-Second proof of Lemma 1.4

A real semi-algebraic set in \mathbb{R}^{d} is the locus of all points that satisfy a given finite Boolean combination of polynomial equations and inequalities in the d coordinates. We say that the description complexity of such a set is at most s if in some representation the number of equations and inequalities is at most s and each of them is of degree at most s. Such a representation is usually called quantifier-free. Note that semialgebraic sets can also be defined using quantifiers involving additional variables, but these quantifiers can always be eliminated (see [2]).

Let H_{1}, \ldots, H_{m} be families of semi-algebraic sets of constant description complexity, and let R be an m-ary relation on $\prod_{1}^{m} H_{i}$. We assume that R is also semi-algebraic, in the following sense. We associate each $h \in H_{i}$ with a point $\bar{h} \in \mathbb{R}^{d_{i}}$ (say, with the point whose coordinates are the coefficients of the monomials in the polynomial inequalities defining h). We say that R is a semi-algebraic m-ary relation if its corresponding representation
$\bar{R}=\left\{\left(\bar{h}_{1}, \ldots, \bar{h}_{m}\right) \in \mathbb{R}^{d_{1}+\cdots+d_{m}} \mid h_{1} \in H_{1}, \ldots, h_{m} \in H_{m},\left(h_{1}, \ldots, h_{m}\right) \in R\right\}$
is a semi-algebraic set.
We need the following result of Fox et al. [5]. Its proof is based on the case $m=2$, established by Alon et al. [1].

Theorem 4.1. Let $\alpha>0$, let H_{1}, \ldots, H_{m} be finite families of semialgebraic sets of constant description complexity, and let R be a fixed semi-algebraic m-ary relation on $H_{1} \times \cdots \times H_{m}$ such that the number of m-tuples that are related (resp. unrelated) with respect to R is at least $\alpha \prod_{i=1}^{m}\left|H_{i}\right|$. Then there exists a constant $c^{\prime}>0$, which depends on α, m and on the maximum description complexity of the sets in $H_{i}(i \in[m])$
and R, and there exist subfamilies $H_{i}^{*} \subseteq H_{i}$ with $\left|H_{i}^{*}\right| \geq c^{\prime}\left|H_{i}\right|(i \in[m])$ such that $\prod_{1}^{m} H_{i}^{*} \subset R$ (resp. $\prod_{1}^{m} H_{i}^{*} \cap R=\emptyset$).
Proof of Lemma 1.4. We apply Lemma 4.1 with $m=d+1$ for the families of hyperplanes $H_{i}, i \in[d+1]$. As in the previous section, we associate each hyperplane $h_{i} \in H_{i}$ with its dual vector $a_{i} \in \mathbb{R}^{d} \backslash\{0\}$ satisfying

$$
h_{i}=\left\{x \in \mathbb{R}^{d}: a_{i} \cdot x=1\right\}
$$

As in (1.1), given a $(d+1)$-tuple of hyperplanes $\left(h_{1}, \ldots, h_{d+1}\right) \in$ $\prod_{1}^{d+1} H_{i}$, for every $i \in[d+1]$, let $v_{i}=\cap_{j \in[d+1] \backslash\{i\}} h_{j}$. That is, v_{i} is the unique solution of the equations $a_{j} \cdot x=1$ for $j \in[d+1] \backslash\{i\}$. Using the assumption that the hyperplanes are in general position, we have $v_{i} \notin h_{i}$. Therefore, v_{i} must lie in one of the open half-spaces bounded by h_{i}, depending on $\operatorname{sign}\left(a_{i} \cdot v_{i}-1\right)$.

Define 2^{d+1} different $(d+1)$-ary relations on $\prod_{1}^{d+1} H_{i}$, depending on the sign pattern

$$
\left(\operatorname{sign}\left(a_{1} \cdot v_{1}-1\right), \ldots, \operatorname{sign}\left(a_{d+1} \cdot v_{d+1}-1\right)\right)
$$

For example, one of these relations is the relation R^{+}, according to which $\left(h_{1}, \ldots, h_{d+1}\right)$ are related if and only if $\operatorname{sign}\left(a_{i} \cdot v_{i}-1\right)>0$ for all $i \in[d+1]$. Obviously, each $(d+1)$-tuple $\left(h_{1}, \ldots, h_{d+1}\right) \in \prod_{1}^{d+1} H_{i}$ is related by precisely one of the above relations. Therefore, for at least one relation R, the number of $(d+1)$-tuples related with respect to R is at least $\frac{1}{2^{k}} \prod_{i=1}^{d+1}\left|H_{i}\right|$. Hence, if R is a semi-algebraic relation, then Lemma 1.4 follows directly from Lemma 4.1.

To see that the above relations are semi-algebraic, it is sufficient to observe the following. Let A be the d by d matrix whose columns are a_{2}, \ldots, a_{d+1}, and write A_{k} for the matrix obtained from A by replacing its k th column by a column whose each entry is 1 . Since v_{1} is the unique solution of the equations $a_{j} \cdot x=1$ for $j \in[d+1] \backslash\{1\}$, by Cramer's rule we obtain that the k th coordinate of $v_{1} \in \mathbb{R}^{d}$ is $\operatorname{det} A_{k} / \operatorname{det} A$. Thus, we have

$$
a_{1} \cdot v_{1}-1=\sum_{k=1}^{d} a_{1 k} \frac{\operatorname{det} A_{k}}{\operatorname{det} A}-1
$$

where $a_{1 k}$ denotes the k th component of a_{1}. Consequently,

$$
\operatorname{sign}\left(a_{1} \cdot v_{1}-1\right)=\operatorname{sign}\left[\operatorname{det} A\left(\sum_{k=1}^{d} a_{1 k} \operatorname{det} A_{k}\right)-(\operatorname{det} A)^{2}\right] .
$$

The last expression in square brackets is a polynomial in the variables $a_{i k}, i \in[d+1], k \in[d]$. Analogously, $\operatorname{sign}\left(a_{2} \cdot v_{2}-1\right), \ldots, \operatorname{sign}\left(a_{d+1}\right.$. $\left.v_{d+1}-1\right)$ can be written as the sign of a polynomial, which implies that the above relations are indeed semi-algebraic.

This proof gives a weaker constant in Lemma 1.4 and consequently in Theorem 1.1. Namely, using a quantitative version of a weaker form of

Lemma 1.4 obtained by Bukh and Hubard [4], we obtain $c(d)=b(d)=$ $3^{-(d+1) 3^{d^{2}+d+1}}$. Note that Fox et al. [5] used Theorem 4.1 to establish a much stronger structure theorem for semi-algebraic relations.

Acknowledgements. Part of this work was done at Centre Interfacultaire Bernoulli, EPFL, Lausanne. Research partially supported by NSF grant CCF-08-30272, Swiss National Science Foundation grant 200021-125287/1, by ERC Advanced Research Grant no 267165, and by Hungarian National Research Grant no 78439. The authors are grateful to R. Radoičić for his valuable suggestions.

References

[1] N. Alon, J. Pach, R. Pinchasi, M. Radoičić, and M. Sharir. Crossing patterns of semi-algebraic sets. J. Combin. Theory Ser. A, 111 (2005), 310-326.
[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry (2nd edition). Springer, Berlin, 2006.
[3] I. Bárány and P. Valtr. Positive fraction Erdős-Szekeres theorem. Discrete Comput. Geometry, 19 (1998), 335-342.
[4] B. Bukh and A. Hubard. Space crossing numbers. In: Symposium on Computational Geometry, ACM Press, 2011, 163-170.
[5] J. Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach. Overlap properties of geometric expanders, Journal für die reine und angewandte Mathematik (Crelle's Journal), in press.
[6] J. E. Goodman, R. Pollack, and R. Wenger. Geometric transversal theory. In: New Trends in Discrete and Computational Geometry (J. Pach, ed.). SpringerVerlag, New York, 1991.
[7] R. N. Karasev. Dual central point theorems and their generalizations. arXiv:0909.4915 and also Math. Sbornik, 199 (2008), 1459-1479.
[8] J. Matoušek. Lectures on Discrete Geometry. Spinger, Heidelberg, 2002.
[9] J. Pach. A Tverberg-type result on multicolored simplices. Computational Geometry: Theory and Appls, 1 (1998), 71-76.
[10] H. Tverberg. A generalization of Radon's theorem. J. London Math. Soc., 41 (1966), 123-128.

Imre Bárány

Rényi Institute of Mathematics
Hungarian Academy of Sciences
PO Box 127, 1364 Budapest
Hungary
and
Department of Mathematics
University College London
Gower Street, London WC1E 6BT
England
e-mail: barany@renyi.hu

János Pach

Rényi Institute of Mathematics
Hungarian Academy of Sciences
PO Box 127, 1364 Budapest
Hungary
and
Chair of Combinatorial Geometry
EPFL-SB-MATHGEOM-DCG, Station 8
CH-1015 Lausanne
Switzerland
e-mail: pach@renyi.hu

