Halving lines and perfect cross-matchings

János Pach¹ and József Solymosi² Mathematical Institute of the Hungarian Academy of Sciences H-1364 Budapest, P.O.B. 127

Abstract

It is shown that a set P of 2n points in general position in the plane admits a perfect matching with pairwise crossing segments if and only if it has precisely n halving lines. As a consequence, one can give a $O(n \log n)$ -time algorithm which decides whether there exists such a matching in P and, if so, finds it.

1 Preliminaries

Let $P = \{p_1, p_2, \ldots, p_{2n}\}$ be a set of 2n points in the plane in general position, i.e., no three points are collinear. A line $p_i p_j$ is said to be a halving line of P if both open half-planes bounded by $p_i p_j$ contain precisely n-1 points. The number of halving lines of P is denoted by h(P).

Taking an arbitrary line through any point of P and turning it around by at most 180 degrees, it always arrives at a position where it becomes a halving line. Thus, we have $h(P) \geq n$, and equality holds, e.g., when P is the vertex set of a convex 2n-gon.

It is an intriguing open problem to determine the asymptotic behavior of $h(n) = \max_P h(P)$, where the maximum is taken over all 2n-element sets in general position in the plane. It is known that

$$c_1 n \log n \le h(n) \le c_2 n^{4/3}$$

for suitable constants $c_1, c_2 > 0$ (see [L], [EL], [D]). This function plays an important role in the analysis of many algorithms in computational geometry (cf. [E]).

 $^{^1\}mathrm{Supported}$ by NSF grant CR-94-24398, PSC-CUNY Research Award 663472, and OTKA-T-020914.

²Supported by the DIMATIA Center, Prague.

We say that two segments cross if they have an interior point in common. Let c(P) denote the maximum number of pairwise crossing segments $\overline{p_ip_j}$ whose endpoints belong to P. Obviously, $c(P) \leq n$ holds for every 2n-element set P. If c(P) = n, we say that P has a $perfect\ cross-matching$. This is the case, for example, when P is the vertex set of a convex 2n-gon.

Let $c(n) = \min_{P} c(P)$, where the minimum is taken over all 2n-element sets in general position in the plane. We have

$$c(n) \geq c_3 \sqrt{n}$$
,

for some positive constant c_3 , but there is no sublinear upper bound known for c(n) (see [A],[P]). In fact, in [A] it was shown that every 2n-element set in general position has an at least $c_3\sqrt{n}$ -element subset which not only admits a perfect cross-matching, but also satisfies a much stronger condition. In this strong sense the result is best possible [V]. It looked difficult to improve the lower bound on c(n), because we had no good characterization of perfectly cross-matchable sets.

The aim of this note is to give such a good characterization and to design an efficient algorithm which decides whether a set admits a perfect crossmatching.

2 Characterization of perfectly cross-matchable sets

In this section, we would like to point out a simple relation between c(P) and h(P): the first quantity attains its maximum if and only if the second attains its minimum. More precisely, we have the following.

Theorem 1. A set of 2n points in general position in the plane admits a perfect cross-matching if and only if it has precisely n halving lines.

Proof: Suppose first that $P = \{p_1, p_2, \ldots, p_{2n}\}$ has a perfect cross-matching (i.e., n pairwise crossing segments) $\overline{p_{2i-1}p_{2i}}, 1 \leq i \leq n$. The extension of each of these segments is a halving line, because each of them separates the two endpoints of all other segments $\overline{p_{2i-1}p_{2i}}$. We will show that P has no other halving lines.

Assume, in order to obtain a contradiction, that (say) p_1p_3 is also a halving line. We may suppose without loss of generality that p_1p_2 is horizontal, p_2 is to the right of p_1 , and that p_{2i} is below and p_{2i-1} is above p_1p_2 , for every $2 \le i \le n$. Since each segment $\overline{p_{2i-1}p_{2i}}$ $(3 \le i \le n)$ has to cross $\overline{p_1p_2}$, if $\overline{p_{2i-1}p_{2i}}$ has an endpoint to the left of p_1p_3 , then its other endpoint must lie to the right of p_1p_3 . However, both p_2 and p_4 are on the right-hand

side of p_1p_3 . This implies that the number of points to the right of p_1p_3 exceeds by at least 2 the number of points to the left of it, contradicting our assumption that p_1p_3 is a halving line.

Suppose next that P has precisely n halving lines. Since there is at least one halving line through every point p_k , we obtain that there must be exactly one. Thus, we can assume without loss of generality that the complete list of halving lines is $p_{2i-1}p_{2i}$ $(1 \le i \le n)$. We will show that the segments $\overline{p_{2i-1}p_{2i}}$ $(1 \le i \le n)$ are pairwise crossing.

Assume, for contradiction, that $\overline{p_1p_2}$ and $\overline{p_3p_4}$ have no interior point in common. By renumbering the points if necessary, we may also suppose that p_1p_2 is horizontal, p_2 is to the right of p_1 , $\overline{p_3p_4}$ is entirely above the line p_1p_2 , and that p_3 is closer to p_1p_2 than p_4 is. Notice that a minor counterclockwise turn around p_3 will bring the line $\ell=p_3p_4$ into a position, where there are precisely n points on its right-hand side. (Indeed, p_4 will be added to the set of points to the right of p_3p_4 .) If we continue to turn ℓ around p_3 in the counter-clockwise direction, we arrive at a position where ℓ becomes parallel to p_1p_2 , i.e., it becomes horizontal. At that moment, there are at most n-2 points above ℓ (these points form a subset of the set of all points different from p_3 which lie above the halving line p_1p_2). Hence, there is an intermediate position $\ell=p_3p_k$ for some $k\neq 4$, in which the number of points on the right-hand side of ℓ is precisely n-1. This means that p_3p_k is a halving line which does not appear in the complete list of halving lines, $p_{2i-1}p_{2i}$ ($1\leq i\leq n$). Contradiction. \square

Actually, this argument also yields the uniqueness of the perfect cross-matching.

Theorem 2. Any set of points in general position in the plane admits at most one perfect cross-matching.

Proof: As we have shown, every perfect cross-matching of P consists of exactly those segments between two points of P, whose extensions are *halving lines* of P. \square

3 Algorithm

The above characterization of perfectly cross-matchable sets allows us to design an $O(n \log n)$ -time algoritm which decides whether a set of 2n points satisfies this property and, if so, finds a perfect cross-matching for it.

Let P be a 2n-element point set in general position in the plane, which is the union of two n-element sets, P_1 and P_2 , separated by a straight line (say, by the y-axis). For any non-vertical line ℓ , let $P_i(\ell^+)$ (resp. $P_i(\ell^-)$)

denote the set of points in P_i lying above (resp. below) ℓ . A line ℓ not passing through any point of P is called a ham-sandwich cut for P, if

$$|P_1(\ell^+)| = |P_2(\ell^-)| = \lfloor n/2 \rfloor.$$

It was shown by Megiddo [M] that one can always find such a line ℓ in O(n) steps (see also [LM]).

Any matching of P that has a segment to the left of the y-axis, has another one to the right of it, and these two segments cannot cross. Thus, if there exists a perfect cross-matching for P, then all of its segments must cross the y-axis and, similarly, they must also cross the ham-sandwich cut ℓ . Consequently, a perfect cross-matching M for P is the union of a perfect cross-matching M_1 for $P_1(\ell^+) \cup P_2(\ell^-)$ and a perfect cross-matching M_2 for $P_1(\ell^-) \cup P_2(\ell^+)$. Let M_i^+ and M_i^- denote the $upper\ envelope$ and the $lower\ envelope$ (i.e., the pointwise maximum and pointwise minimum) of the lines supporting the segments of M_i , respectively (i=1,2). Clearly, M_i^+ and M_i^- are unbounded convex polygonal paths, with at most $\lfloor n/2 \rfloor$ vertices each. (See Figure 1.)

Figure 1.

We need the following corollary of Theorem 2.

Claim. The set P admits a perfect cross-matching M if and only if the following conditions are satisfied.

- (1) $P_1(\ell^+) \cup P_2(\ell^-)$ admits a perfect cross-matching M_1 and $P_1(\ell^-) \cup P_2(\ell^+)$ admits a perfect cross-matching M_2 .
- (2) The convex hull $\operatorname{conv} P_2(\ell^+)$ is above the polygonal path M_1^+ , and $\operatorname{conv} P_1(\ell^-)$ is below M_1^- . Similarly, $\operatorname{conv} P_1(\ell^+)$ is above M_2^+ , and $\operatorname{conv} P_2(\ell^-)$ is below M_2^- .

Then, we have $M = M_1 \cup M_2$.

Proof. We have seen before that if P admits a perfect cross-matching M, then it satisfies condition (1) and $M=M_1\cup M_2$ holds. By Theorem 2, M_1 and M_2 are uniquely determined. To see that (2) is necessary, too, assume that (say) $P_2(\ell^+)$ has a point p below M_1^+ . Then p lies below the supporting line of at least one segment $\overline{qq'}\in M_1$. Let p' denote the element of $P_1(\ell^-)$ connected to p in M_2 . Then $\overline{pp'}\cap \overline{qq'}=\emptyset$, contradicting our assumption that any two segments of M cross.

Suppose next that conditions (1) and (2) are satisfied. Then $M = M_1 \cup M_2$ is a perfect cross-matching for P. Indeed, if there were two disjoint segments, $\overline{pp'} \in M_1$ and $\overline{qq'} \in M_2$, such that (say) $\overline{qq'}$ is below (resp. above) the line pp', then $\operatorname{conv} P_2(\ell^+)$ would not lie above the polygonal path M_1^+ (resp. $\operatorname{conv} P_1(\ell^-)$ would not lie below M_1^-), contradicting condition (2). \square

Let M^+ and M^- denote the upper and the lower envelope of all lines supporting the segments of $M=M_1\cup M_2$, respectively. Clearly, M^+ can be obtained as the upper envelope of M_1^+ and M_2^+ , and M^- can be obtained as the lower envelope of M_1^- and M_2^- .

It is well known that one can compute the union and the intersection of two convex polygons of at most n sides in time O(n) ([PH], [S]). Thus, if we know $\operatorname{conv} P_i(\ell^+)$, $\operatorname{conv} P_i(\ell^-)$, M_i^+ , and M_i^- for i=1,2, then in linear time we can determine $\operatorname{conv} P_i(i=1,2)$, M^+ and M^- . If any of the conditions of the Claim is not satisfied, we conclude that P does not admit a perfect cross-matching.

So one can use a divide-and-conquer algorithm to decide whether $P = P_1 \cup P_2$ admits a perfect cross-matching and, if yes, to compute it simultaneously with $\operatorname{conv} P_i$ $(i=1,2), M^+$ and M^- . At each stage it takes linear time to find a ham-sandwich cut ℓ and to do the merge step.

We obtained the following.

Theorem 3. There is an $O(n \log n)$ time, O(n) space algorithm which decides whether a set of 2n points in general position in the plane admits a perfect cross-matching and, if so, computes it.

Clearly, any decision tree that determines the perfect cross-matching of a planar point set of 2n points (if it exists) has height $\Omega(n \log n)$. In this sense Theorem 3 is asymptotically tight.

References

- [A] B. Aronov, P. Erdős, W. Goddard, D.J. Kleitman, M. Klugerman, J. Pach, and L.J. Schulman, Crossing families, Combinatorica 14 (1994), 127–134.
- [D] T. Dey, Improved bounds for k-sets, Discrete and Computational Geometry, to appear.
- [E] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
- [EL] P. Erdős, L. Lovász, A. Simmons, and E. Straus, Dissection graphs of planar point sets, in: *A Survey of Combinatorial Theory* (G. Srivastava, ed.), North-Holland, Amsterdam, 1973, 139–149.
- [LM] Chi-Yuan Lo, J. Matoušek, and W. Steiger, Algorithms for hamsandwich cuts, *Discrete and Computational Geometry* 11 (1994), 433–452.
- [L] L. Lovász, On the number of halving lines, Annales Universitatis Scientarium Budapest, Eötvös, Sectio Mathematica 14 (1971), 107–108.
- [M] N. Megiddo, Partitioning with two lines in the plane, *J. Algorithms* **6** (1985), 430–433.
- [P] J. Pach and P.K. Agarwal, Combinatorial Geometry, J. Wiley & Sons, New York, 1995.
- [PH] F.P. Preparata and S.J. Hong, Convex hulls of finite sets of points in two and three dimensions, *Communications ACM* **20** (1977), 87–93.
- [S] M.I. Shamos, Computational Geometry, Ph.D. Thesis, UMI No. 7819047, Yale University, New Haven, CT, 1978.
- [V] P. Valtr, On mutually avoiding sets, in: The Mathematics of Paul Erdős, II (R. L. Graham and J. Nešetřil, eds.), Algorithms and Combin. 14, Springer, Berlin, 1997, 324–332.