Halving lines and perfect cross-matchings

Janos Pach' and Jézsel Solymosi*

Mathematical Institute of the
Hungarian Academy of Sciences

H-1364 Budapest, P.O.B. 127

Abstract

It is shown that a set P of 2n points in general position in the
plane admits a perfect matching with pairwise crossing segments if
and only if it has precisely n halving lines. As a consequence, one can
give a O(nlogn)-time algorithm which decides whether there exists
such a matching in P and, if so, finds it.

1 Preliminaries

Let P = {p1,p2,.-.,P2n} be a set of 2n points in the plane in general
position, i.e., no three points are collinear. A line p;p; is said to be a
halving line of P if both open half-planes bounded by p;p; contain precisely
n — 1 points. The number of halving lines of P is denoted by h(P).

Taking an arbitrary line through any point of PP and turning it around
by at most 180 degrees, it always arrives at a position where it becomes a
halving line. Thus, we have h(P) > n, and equality holds, e.g., when P is
the vertex set of a convex 2n-gon.

It is an intriguing open problem to determine the asymptotic behavior
of h(n) = maxp h(P), where the maximum is taken over all 2n-element sets
in general position in the plane. It is known that

cinlogn < h(n) < con?/®
for suitable constants ¢1, ¢z > 0 (see [L], [EL], [D]). This function plays an
important role in the analysis of many algorithms in computational geometry

(cf. [E]).
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We say that two segments cross if they have an interior point in common.
Let ¢(P) denote the maximum number of pairwise crossing segments p;p;
whose endpoints belong to P. Obviously, ¢(P) < n holds for every 2n-
element set P. If ¢(P) = n, we say that P has a perfect cross-matching.
This is the case, for example, when P is the vertex set of a convex 2n-gon.

Let ¢(n) = minp ¢(P), where the minimum is taken over all 2n-element
sets in general position in the plane. We have

c(n) > esv/m,

for some positive constant c3, but there is no sublinear upper bound known
for ¢(n) (see [A],[P]). In fact, in [A] it was shown that every 2n-element set in
general position has an at least c3y/n-element subset which not only admits
a perfect cross-matching, but also satisfies a much stronger condition. In this
strong sense the result is best possible [V]. It looked difficult to improve the
lower bound on ¢(n), because we had no good characterization of perfectly
cross-matchable sets.

The aim of this note is to give such a good characterization and to design
an efficient algorithm which decides whether a set admits a perfect cross-
matching.

2 Characterization of perfectly cross-matchable sets

In this section, we would like to point out a simple relation between ¢(P)
and h(P): the first quantity attains its maximum if and only if the second
attains its minimum. More precisely, we have the following.

Theorem 1. A set of 2n points in general position in the plane admits a
perfect cross-matching if and only if it has precisely n halving lines.

Proof: Suppose first that P = {py, p2, . . ., p2n } has a perfect cross-matching
(i.e., n pairwise crossing segments) pz;—1pzi, | < ¢ < n. The extension of
each of these segments is a halving line, because each of them separates the
two endpoints of all other segments pg;_1pz;. We will show that P has no
other halving lines.

Assume, in order to obtain a contradiction, that (say) p1ps is also a halv-
ing line. We may suppose without loss of generality that p;p; is horizontal,
p2 is to the right of py, and that py; is below and pg;_1 is above pypo, for
every 2 < ¢ < n. Since each segment pz;—1pz; (3 < 7 < n) has to cross
P1P2, if Pa;_1p2; has an endpoint to the left of pps, then its other endpoint
must lie to the right of pyps. However, both p; and p4 are on the right-hand




side of pips. This implies that the number of points to the right of pyps
exceeds by at least 2 the number of points to the left of it, contradicting our
assumption that p;ps is a halving line.

Suppose next that P has precisely n halving lines. Since there is at least
one halving line through every point pi, we obtain that there must be ezactly
one. Thus, we can assume without loss of generality that the complete list
of halving lines is p2;—1p2; (1 < 7 < n). We will show that the segments
PziciPz (1 < i< n) are pairwise crossing.

Assume, for contradiction, that p;pz and p3ps have no interior point in
common. By renumbering the points if necessary, we may also suppose that
p1p2 is horizontal, py is to the right of py, psps is entirely above the line
p1p2, and that ps is closer to pipy than p, is. Notice that a minor counter-
clockwise turn around ps will bring the line £ = p3p,4 into a position, where
there are precisely n points on its right-hand side. (Indeed, p4 will be added
to the set of points to the right of psp4.) If we continue to turn ¢ around ps
in the counter-clockwise direction, we arrive at a position where £ becomes
parallel to pyps, i.e., it becomes horizontal. At that moment, there are at
most n — 2 points above £ (these points form a subset of the set of all points
different from ps which lie above the halving line pip2). Hence, there is
an intermediate position £ = pspy for some k # 4, in which the number of
points on the right-hand side of £ is precisely n — 1. This means that pspy
is a halving line which does not appear in the complete list of halving lines,
p2i—1p2; (1 <4< n). Contradiction. O

Actually, this argument also yields the uniqueness of the perfect cross-
matching.

Theorem 2. Any set of points in general position in the plane admits at
most one perfect cross-matching.

Proof: As we have shown, every perfect cross-matching of P consists of ex-
actly those segments between two points of PP, whose extensions are halving
lines of P. O

3 Algorithm

The above characterization of perfectly cross-matchable sets allows us to
design an O(n logn)-time algoritm which decides whether a set of 2n points
satisfies this property and, if so, finds a perfect cross-matching for it.

Let P be a 2n-element point set in general position in the plane, which
is the union of two n-element sets, P, and P;, separated by a straight line
(say, by the y-axis). For any non-vertical line ¢, let P;(¢*) (resp. P;({7))



denote the set of points in F; lying above (resp. below) ¢. A line ¢ not
passing through any point of P is called a ham-sandwich cut for P, if

|PL(EF)] = [Pa(€7)] = [n/2].

It was shown by Megiddo [M] that one can always find such a line £ in O(n)
steps (see also [LM]).

Any matching of P that has a segment to the left of the y-axis, has
another one to the right of it, and these two segments cannot cross. Thus,
if there exists a perfect cross-matching for P, then all of its segments must
cross the y-axis and, similarly, they must also cross the ham-sandwich cut
£. Consequently, a perfect cross-matching M for P is the union of a perfect
cross-matching M for Py (¢7) U Py(£7) and a perfect cross-matching M for
Pi(£7)U Py(€). Let M;" and M denote the upper envelope and the lower
envelope (i.e., the pointwise maximum and pointwise minimum) of the lines
supporting the segments of M;, respectively (i = 1,2). Clearly, MZ»+ and
M are unbounded convex polygonal paths, with at most [n/2] vertices
each. (See Figure 1.)

P, (1)

Figure 1.
We need the following corollary of Theorem 2.



Claim. The set P admits a perfect cross-matching M if and only if the
following conditions are satisfied.

(1) PL(£*) U Py(£7) admits a perfect cross-matching My and P (™) U
P, (¢1) admits a perfect cross-matching M.

(2) The convex hull convP,(¢1) is above the polygonal path M;", and
conv Py (£7) is below M . Similarly, conv P, (£1) is above M, and conv P, (£7)
is below M, .

Then, we have M = My U M.

Proof. We have seen before that if PP admits a perfect cross-matching M,
then it satisfies condition (1) and M = M; U M holds. By Theorem 2, M,
and My are uniquely determined. To see that (2) is necessary, too, assume
that (say) P»(¢*) has a point p below M;t. Then p lies below the supporting
line of at least one segment q¢’ € M. Let p’ denote the element of Py (™)
connected to p in M,. Then pp’ N q¢' = 0, contradicting our assumption
that any two segments of M cross.

Suppose next that conditions (1) and (2) are satisfied. Then M = M; U
M, is a perfect cross-matching for P. Indeed, if there were two disjoint
segments, pp/ € M; and q¢ € My, such that (say) gq’ is below (resp.
above) the line pp’, then conv P, (£T) would not lie above the polygonal path
M;t (resp. convP;(¢7) would not lie below M; ), contradicting condition
(2). O

Let M* and M~ denote the upper and the lower envelope of all lines
supporting the segments of M = M, U My, respectively. Clearly, MT can be
obtained as the upper envelope of M1+ and M2+, and M~ can be obtained
as the lower envelope of M; and M, .

It is well known that one can compute the union and the intersection of
two convex polygons of at most n sides in time O(n) ([PH], [S]). Thus, if we
know convP;(¢*), convP;(£~), M, and M for i = 1,2, then in linear time
we can determine convP;(i = 1,2), M+ and M~. If any of the conditions
of the Claim is not satisfied, we conclude that PP does not admit a perfect
cross-matching.

So one can use a divide-and-conquer algorithm to decide whether P =
Py U P, admits a perfect cross-matching and, if yes, to compute it simulta-
neously with convP; (i = 1,2), M™ and M~. At each stage it takes linear
time to find a ham-sandwich cut £ and to do the merge step.

We obtained the following.

Theorem 3. There is an O(nlogn) time, O(n) space algorithm which
decides whether a set of 2n points in general position in the plane admits a
perfect cross-matching and, if so, computes it.



Clearly, any decision tree that determines the perfect cross-matching of
a planar point set of 2n points (if it exists) has height Q(nlogn). In this
sense Theorem 3 is asymptotically tight.
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