Three-dimensional grid drawings of graphs
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Abstract. A three-dimensional grid drawing of a graph G is a placement
of the vertices at distinct integer points so that the straight-line segments
representing the edges of G are pairwise non-crossing. It is shown that
for any fixed r > 2, every r-colorable graph of n vertices has a three-
dimensional grid drawing that fits into a box of volume O(n”). The order
of magnitude of this bound cannot be improved.

1 Introduction

In a grid drawing of a graph, the vertices are represented by distinct points
with integer coordinates and the edges are represented by straight-line segments
connecting the corresponding pairs of points. Grid drawings in the plane have
a vast literature [BE]. In particular, it is known that every planar graph of n
vertices has a two-dimensional grid drawing that fits into a rectangle of area
O(n?), and this bound is asymptotically tight [FP],[S].

The possibility of three-dimensional representations of graphs was suggested
by software engineers [MR]. The analysis of the volume requirement of such
representations was initiated in [CE], where the following statement was proved.
Every graph of n vertices has a three-dimensional grid drawing in a rectangular
box of volume O(n?), and this bound cannot be improved. To establish the
first half of the statement, it is sufficient to consider representations of complete
graphs. Cohen et al. used a generalization of a well-known construction of Erdés
showing that the vertices of a complete graph K, can be placed at the points
(4,42 mod p,i® mod p), 1 < i < n, where p is a prime between n and 2n. Since
no four of these points lie in the same plane, the resulting straight-line drawing
of K, has no crossing edges.

A complete r-partite graph is called balanced, if any two of its classes have the
same number of points, or their sizes differ by one. Let K,.(n) denote a balanced
complete r-partite graph with n > r vertices. That is, the vertex set of K,.(n)
splits into r disjoint classes, V1, V5, ..., V,, such that |V;| = |n/r| or [n/r], and
two vertices are connected by an edge if and only if they belong to different V;’s.

It was pointed out by Cohen et al. [CE] that K»(n) has a three-dimensional
grid drawing within a box of volume O(n?), and they asked whether this bound
is optimal. T. Calamoneri and A. Sterbini [CS] proved that any such drawing
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requires a box whose volume is at least £2(n®/2). Furthermore, they have shown
that K3(n) and K4(n) also permit three-dimensional grid drawings of volume
O(n?), and conjectured that the same is true for K,.(n), for any fixed r > 4.

The aim of the present note is to answer the question of Cohen et al. and to
verify the conjecture of Calamoneri and Sterbini. A graph is called r-colorable
if its vertices can be colored by r colors so that no two adjacent vertices receive
the same color. Equivalently, G is r-colorable if it is a subgraph of a complete
r-partite graph.

Theorem. For every r > 2 fized, any r-colorable graph of n vertices has a three-
dimensional grid drawing that fits into a rectangular bozx of volume O(n?). The
order of magnitude of this bound cannot be improved.

2 Proof of the Theorem

To prove the second assertion, it is enough to establish an £2(n?) lower bound on
b, the number of integer points in a box B accommodating a three-dimensional
grid drawing of the balanced complete bipartite graph K»(n) with vertex classes
Vi1, Vs. Clearly, Ks(n) is r-colorable for any r > 2. Fix a grid drawing and
consider the set of all vectors pointing from a vertex of V; to a vertex of V5.
The number of such vectors is [§] - [5] > ”24’1, and no two of them can be
identical, otherwise the corresponding four points would induce a parallelogram
whose diagonals cross each other. (In fact, no two such vectors can point in the
same direction.) On the other hand, the total number of vectors determined by
two gridpoints in B is smaller than 8b. Thus, 8b > "24_ L as required.
The proof of the upper bound is based on the following.

Lemma. For any r > 2 and for any n divisible by r, the balanced complete
r-partite graph K,.(n) has a three-dimensional grid drawing that fits into a rect-
angular box of size r X 4n X 4rn.

Proof. Let p be the smallest prime with p > 2r — 1 and set N := p- . Note
that p < 4r and thus N < 4n. For any 0 < i <7r —1, let

Vi :={(i,t,it) : 0 <t < N,t =4> (mod p)}.

These sets are pairwise disjoint, and each of them has precisely % = 2 elements.
Connect any two points belonging to different V;’s by a straight-line segment.
The resulting drawing of K,.(n) fits into a rectangular box of size r x 4n x 4rn,
as desired.

It remains to show that no two edges of this drawing cross each other. Sup-
pose, for contradiction, that there are two crossing edges, e and e'. We distinguish
three different cases, according to the number of distinct classes V;, the endpoints
of e and €' belong to.



Case 1: The endpoints of e and €’ are from four distinct classes, Vi, , V;,, Vi, , and
Via-

Let (ia,ta,iata),l < a < 4, be the corresponding endpoints, so that t, = i2
(mod p). Then these points lie in a plane, and the determinant
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vanishes. Therefore, it must also vanish modulo p. However, modulo p this de-
terminant reduces to the Vandermonde determinant. Thus,
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which is non-zero modulo p, a contradiction.

Case 2: The endpoints of e and e’ are from three different classes, Vi, V;, Vi.

Assume without loss of generality that two of these points, (i,%1,4t1) and
(i,t2,it2), belong to V;, and the other two are (j,s,js) € V; and (k,u, ku) € Vj.
These four points cannot be coplanar (hence e and e’ cannot cross each other),
because the corresponding test determinant
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is non-zero. To see this, observe that s—u = j2—k? = (j—k)(j+k) Z0 (mod p).
This is the point where we use the assumption that 0 < j,k <r—1< (p—1)/2.

Case 3: The endpoints of e and e’ are from two different classes, V; and V;.
Let these points be (4, t1,4t1), (4,¢2,4t2) € V; and (4, s1,js1), (4, $2,5s2) € Vj.
Now the corresponding test determinant
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does not vanish, therefore e and e’ cannot cross each other.
This contradiction completes the proof of the Lemma. O

Now we return to the proof of the upper bound of the theorem. In fact, we
can deduce a more precise statement.



Corollary. There exists a ¢ > 0 such that for any r > 2, any r-colorable graph
of n vertices has a three-dimensional grid drawing that fits into a rectangular box

of volume cr’n?.

Proof. Fix an r-colorable graph G with n vertices. We split every color class
into smaller parts such that all but one of them have ezactly and the last one
at most [] points. This defines a decomposition of the vertex set of G into at
most 2r — 1 classes, whose sizes do not exceed [%], and no two points belonging
to the same class are connected by an edge. In other words, G is a subgraph of a
balanced complete (2r — 1)-partite graph K with (2r —1)[%] < 2n+ 2r vertices.
Applying the Lemma to K, the Corollary follows. a

3 Remarks and open problems

A The rectangular box used in the proof of the Theorem has two sides of size
O(n). We can use rectangular boxes of different shapes to represent Ks(n).

Proposition. There is a three dimensional grid drawing of K»(n) which fits into

a rectangular boz of size O(n) x O(y/n) x O(y/n).
Proof. Let V; and V5 be the vertex classes of Ka(n) and let

V2 ={(0,a,b) | 0 < a,b < k,(a,b) =1}
where k =~ m4/n/6.

Then
Vil = [n/2],

u 3k2
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(see [HW]). To see that there is no crossing, we observe that the points of V3
lie on a horizontal plane and there are no two of these points on a line through
(0,0,0) (see Figure). O

B. It would be interesting to determine S, = S.(n), the set of triples (s1, 82, s3)
for which every r-colorable graph of n vertices has a grid drawing that fits into
a box of size s; X ss X s3. In particular, what is the smallest s = s(r) with
(s,8,5) € S;7 It is not hard to see that s;s; > [n/2] and s; > £ holds for every
(s1,82,83) € Sy (r > 2).

C. Since any graph of n vertices with fixed maximum degree r — 1 is r-colorable,
it follows from the Theorem that any such graph permits a grid drawing in a
box of volume O(n?). It seems likely that for every fixed r, this bound can be
substantially improved. We cannot even decide if every graph with maximum
degree 3 has a grid drawing of volume O(n).
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