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Abstract

A triangle is said to be � -fat if its smallest angle is at least ����� . A connected component of the complement
of the union of a family of triangles is called hole. It is shown that any family of �	� -fat triangles in the plane
determines at most 
 �
� ������������

holes. This improves on some earlier bounds of Efrat, Rote, Sharir, Matoušek et al.
Solving a problem of Agarwal and Bern, we also give a general upper bound for the number of holes determined
by � triangles in the plane with given angles. As a corollary, we obtain improved upper bounds for the boundary
complexity of the union of fat polygons in the plane, which, in turn, leads to better upper bounds for the running
times of some known algorithms for motion planning, for finding a separator line for a set of segments, etc.

1. Introduction, main results

Many basic problems in computational geometry related to motion planning [SS83, SS89, SS90], range search-
ing [K97, GJ97], computer graphics [AK94], and geographic information systems [BK97] lead to questions about
the complexity of the boundary of the union of certain geometric objects. When the boundary is simple, these
problems can usually be solved more efficiently [GS93]. This was the motivation behind a lot of research during
the past fifteen years, establishing upper bounds for the complexity (or, equivalently, for the description size) of
the union of various objects.

Perhaps the first results of this kind were the following. Given � simply connected regions in the plane, any two
of which share at most � (resp., at most � ) boundary points, the boundary of their union consists of at most ������� �
(resp., at most �"!$#%�'& ) simple arcs, i.e., connected pieces whose interior belongs to the boundary of a single region
[KL86] (resp., [EG89]; here !�#%�'& denotes the extremely slowly growing inverse of Ackermann’s function). In
some sense, this result is best possible: if two regions are allowed to cross at ( boundary points, then the boundary
of their union may consist of )�#%� � & simple arcs. Indeed, consider � very “skinny” pairwise crossing triangles, no
three of which have a point in common.

However, it was discovered by Matoušek et al. [MP94] that if we restrict how skinny our triangles can be, we
can still establish a nearly linear upper bound on the complexity of their union. For any ���*� , a triangle is said to
be � -fat if each of its angles is at least � . (The reciprocal of the smallest angle of a triangle is often called its aspect
ratio.) It turned out that for any fixed �+�,� , the boundary of the union of �-� -fat triangles in the plane consists of
at most � �����.����� �'/0��1 simple arcs.2
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The boundary complexity of the union of a family of 5 of triangles (or simply connected regions) is defined
as the number of simple arcs along Bd 68795;: , the boundary of the union of 5 . A connected component of the
complement of 7<5 is called a hole. The heart of the argument in [MP94] was the following statement.

Theorem 0. (Matoušek et al.) Any family of =-> -fat triangles in the plane determines ?A@B='C0>ED F holes.

The concept of > -fatness, as well as the above theorem, has been extended to arbitrary polygons by van Kreveld
[K98]. For other extensions and generalizations, see [SH93],[S94],[ES97], [EK98], and [E99].

For wedges (i.e., cones) in place of triangles, a somewhat better upper bound was found by Efrat, Rote, and
Sharir [ER93]. They proved that the number of holes determined by = wedges in the plane (and the boundary
complexity of their union) is ?HGJIKML<N�O�P+QK�R .

Our first theorem generalizes and strengthens this result.
Theorem 1. Any family of =�> -fat triangles in the plane determines ? G I K NSO�P QK R holes. This bound is tight up to
the logarithmic factor.

Theorem 1 can be used to establish a more general upper bound for the number of holes determined by a family
of triangles with given angles.

Theorem 2. Let 5UTWVYX<Z [Y\Y\Y\E[MX I^] be a family of =`_ba triangles in the plane, and let cJd denote the smallest
angle of X d 6Mafehg+eA=': . Suppose ikjlc Z eAc Q enmYmYmoeAc I , and let pqeh= be the largest integer satisfyingrksdSt'Z cudvj,w .

Then 5 determines ?x6%=up N�O�P py: holes. Furthermore, there exists a family 5xz�T{VYX|zZ \Y\Y\ [MX|zI ] [ where X}zd is
isomorphic to X~d and 5 z determines ��6%=upy: holes.

Of course, the same result applies to wedges, provided that their angles are separated from w . Moreover, in this
case an almost identical upper bound holds for the boundary complexity of the union.

Theorem 3. Let 5 be a family of = wedges in the plane with angles i-j�c�Z�e�mYmYm~e�c I j�w . Let p�e`= be the
largest integer satisfying

r sd�t'Z c d j,w .
If p���� , then the boundary complexity of 7<5 is ?x6%=up N�O�P py: . Furthermore, there exists a family of = wedges

with angles coZ [Y\Y\Y\ [�c I , which determines ��6�6�w���c I :�=upy: holes.

Notice that Theorem 3 bounds the boundary complexity instead of the number of holes. The bound in Theorem
2 for the number of holes in families of triangles cannot be extended to boundary complexity as there are families
of equilateral triangles (for which p�T`� ) with superlinear boundary complexities (at least ��6%="c�6%=':�: , cf. [WS88]).

In some applications, e.g., at the overlay of triangulated environments in geographic information systems (GIS),
we cannot assume that all of the participating triangles are fat (have bounded aspect ratios). However, very often
most of them satisfy this condition. To deal with these situations, Agarwal and Bern [AB99] asked whether
Theorem 0 can be generalized as follows. Let 5 be a family of = triangles in the plane, whose average aspect
ratio is bounded by a constant. That is,

r IdSt'Z Z��� T�?�6%=': , where c'd denotes the smallest angle of the g -th triangle.
Is it then true that 5 determines only ?�6%=': (or nearly a linear number of) holes? Theorems 2 and 3 answer this
question in the negative. Indeed, let c d T�� Z� I if a�e�gJe`� =a if � =kj�gJe�= .

Then we have
r IdSt'Z Z��� j���= , but, according to the second statement of Theorem 3, the number of holes can be as

large as ��6%=uD�� Q : , even for wedges. The first statement of Theorem 2 shows that this bound is tight, apart from the
logarithmic factor.

In the case when some of the wedges have angles very close to w , Theorem 3 is not sufficiently tight. A more
careful analysis can account more precisely for the contribution of the convex wedges with angles close to w :



Theorem 4. Let � be a family of � wedges in the plane with angles �-�`�� ¢¡H£Y£Y£~¡`�u¤��`¥0¦ . Let §J¨�© �«ª��­¬ be
the largest integer satisfying �9®"�*¯0¦u°²± , and let ³´¨�© §µª��­¬ be the largest integer satisfying �9¶·�,¦ . (We set §~¸`�
if �J �¹�¯0¦u°²± , and §"¸�³W¸º� if �. �¹,¦ .) Let » be the largest integer with ¼�½¾À¿   � ¾ �,¦ , and, for any Á�¡�Â.¡�³ ,

let »ÄÃv¨Å© �«ª�ÂµÆ be the largest integer such that ¼ ½ÀÇ¾È¿   � ¾ �,¦�É��'Ã .
Then the boundary complexity of Ê<� is ËxÌ%��Í ¼ ®Ã ¿   »�Ã0Î�Ï�Ð$»�ÃÑÍ ¼ ¶Ã ¿ ®ÓÒ   »ÄÃ8ÆÔ¸AË�Ì%�-Í,§Õ»ÔÎ�Ï�Ðo»ÖÍ ¼ ¶Ã ¿ ®ÓÒ   »�Ã×Æ ,

where the sum is taken over all Â with » Ã�Ø¸`� . Furthermore, there is a family of � wedges with angles �   ªYÙYÙYÙ ª�� ¤ ,
which determines ¼ ¶.ÚÃ ¿   »�ÃÛÍÅ³ÝÜÄÍºÁ holes, where ³fÜy¸ºÞ�ßáàÑâ ³kª��ÝÉ,Á�ã .

The rest of the paper is organized as follows. The proofs of Theorems 1, 2-3, and 4 are presented in Sections
2-3, 4, and 5, respectively. The last section contains some combinatorial and algorithmic consequences of the
main results.

2. Reduction to rhombs and assignment of holes

By a polygon we mean a simply connected (bounded or unbounded) region in the plane, whose boundary
consists of a finite number of straight-line segments and possibly two half-lines. A family of polygons is said to
be in general position, if no three lines supporting different sides of the polygons pass through the same point. We
say that a point is incident to a hole ä , if it lies on the boundary of ä .

Given a family å of polygons in the plane, let æuÌ%å+Æ and äqÌ�ç+Æ denote the number of holes determined by å
and the minimum number of non-overlapping convex polygons the union of these holes can be partitioned into,
respectively. Furthermore, let è�Ì%å+Æ stand for the number of concave angles of é�ê9ë|Êvå , the union of the holes.

Lemma 2.1. For any family å of polygons in the plane, we haveæuÌ%å+ÆÔ¡,äÅÌ%å+ÆÔ¡*æuÌ%å+Æ'Íqè�Ì%å+ÆÀÙ
Proof: The lower bound on äÅÌ�ç+Æ follows from the fact that to cover each hole we need at least one convex set. To
establish the upper bound, we show that every hole with » concave vertices can be partitioned into »ÖÍ�Á convex
sets. In the case »ì¸í� , the hole itself is convex. For »�îï� , it is enough to observe that the total number of
concave vertices decreases by cutting the hole into two along the angular bisector at a concave vertex. ð
Lemma 2.2. Let å and å�Ü be two families of polygons in the plane such that ÊvåÖÜòñóÊvå and any segment
connecting two points of é}ê9ë|Êvå which intersects Êvå also intersects Êvå Ü .

Then äqÌ%å+Æ�¡,äqÌ%å�ÜBÆ .
Proof: For any partition of é|ê|ë�Êvå Ü into a family ô of convex sets, â�õ�ë�Êvå{ö9õ÷¨ºô'ã forms a partition ofé ê ë|Êvå into convex sets. Note that we needed the condition in the lemma to guarantee that each member of the
latter family is convex. ð

For the rest of this section we fix an angle ø�¡A¦u°0¯ and set »ÅùÓ¸ûú�¥0¦u°0øEü . Clearly, we have »Å¹lý . Fix any
straight line þ ÿ in the plane. We say that a segment (line, half-line) is canonical if the angle between its supporting
line and þ ÿ is an integer multiple of ¦u°0» . A rhomb is called canonical if (a) all of its sides are canonical, and (ii)
two of its angles are equal to ¦u°0» .

Next we show that Theorem 1 can be reduced to

Theorem 2.3. Any family � of � canonical rhombs in the plane determines ËxÌ%�u»$Î�Ï�Ðo»yÆ holes.

Proof of Theorem 1 (using Theorem 2.3): Let � be a family of ��ø -fat triangles in the plane. Consider a vertex�
of a triangle

��� õl¨	� . By the choice of » , there are at least two special half-lines emanating from
�

, whose
initial segments belong to

��� õ . Therefore, we can pick a point
� Ü on the segment

� õ and two other points, �



and ��� , in �
	�� such that 
����������
����� is a canonical rhomb whose angles at � and ��� are equal to ����� . Let
�� denote such a rhomb. Similarly, we can define two other canonical rhombs, 
�� and 
�� , within the triangle�
	�� . (See Figure 1.)
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Let � � denote the family obtained from � by replacing every triangle ��	�� �!� by the three correspond-
ing canonical rhombs, 
 �#" 
 �$" and 
 � . By Theorem 2.3, � � determines %�&('��$)+*-,.�0/ holes, i.e., 12&3� � /4�%�&('��$)+*-,5�0/76 Now Lemmas 2.1 and 2.2 imply that

12&3�8/$9;:<&3��/59;:=&3� � /.9>12&3� � /@?=A-&3� � /76
In other words, the number of holes determined by � may be larger than the number of holes determined by � �B"
but the difference cannot exceed the total number of concave corners (vertices) in all holes determined by �C� .
However, every such corner corresponds to a vertex of one of the DE' rhombs defined above, so the difference is at
most FHGE' . I

In the rest of this and the next section, we establish Theorem 2.3. We may and will assume without loss of
generality that the rhombs in J are in general position. We use the term edge only for the sides of the rhombs inJ . We call two edges homothetic if they are corresponding sides of two homothetic rhombs. We orient every edgeK of a rhomb toward its vertex of angle ����� . This vertex is called the apex of K . The subsegments of K inherit the
orientation of K .

Let K be an edge and let L be a homothecy class of edges not containing K . There may be several holes whose
boundaries contain a piece of K next to a piece of some element of L . The first and last such holes along K are said
to be extreme. Since there are M-' edges in at most MN� homothecy classes, the number of extreme holes is at mostD-G-�O' . We call the non-extreme holes intermediate. Clearly, it is sufficient to bound the number of intermediate
holes. As every hole incident to a vertex of a rhomb is extreme, the intermediate holes are convex.

Let : be an intermediate hole. Consider two consecutive segments, P and Q , on the boundary of : , belonging
to the edges K and R , respectively., and denote their common endpoint by S . Let T and U denote the apices ofK and R , respectively. Suppose that Q is oriented away from S . We say that : is a hole assigned to K if we haveV SXWYT V 9 V SZW[U V . The distance

V SXWYT V is called the depth of : along K or, if it leads to no confusion, simply
the depth of : . We say that : is an in-hole or an out-hole assigned to K , depending on whether P is oriented
toward S or away from S .

Lemma 2.4. Every intermediate hole is assigned to at least one edge.

Proof: Let : be an intermediate hole. If the segments bounding : are not cyclically oriented, we find two
consecutive segments, both oriented away from their common endpoint. In this case, : is an out-hole assigned to
one of the edges containing these two segments.

Suppose that the segments forming the boundary of : are cyclically oriented. Let S�\ " S�] " 6^6^6 " S�_��`S�a denote
the vertices of : in this cyclic order, and let Tcb denote the apex of the edge containing S�b(d@\eS�b5&fFg9;h$9`�0/ . Set



i2j^k2lnmpo`i l
. For every qsrutvr>w , if x is not an in-hole assigned to the edge containing yCz({ l y�z , then we have| y�z~} i z |��!| y�z~} i z k2l | o | y�z~}Yy�z k2l |^��| y�z k2l } i z k2l |p�

Summing up these inequalities, we obtainj�
z�� l
| y�z~} i z |��

j�
z+� l
| y�z~} i z |^� Per �3x��7�

where Per �3x�� stands for the perimeter of x . This contradiction proves that x is an in-hole assigned to an edge
supporting one of its sides. �

Next we show that the depths of the in-holes along an edge are ���fq���w0� apart in a logarithmic scale, and the
same is true for the depths of the out-holes. (The depth of an in-hole can be arbitrarily close to the depth of an
out-hole though.) More precisely, we have:

Lemma 2.5. Let x be an in-hole (out-hole) assigned to an edge � , whose depth is � . Then the depth of no other
hole assigned to � is between � and �Eqn} ljO� � (respectively. between � and ��q � ljO� � ).
Proof: Let � and � be two consecutive segments of the boundary of x causing x to be assigned to � . Let y be
their common endpoint, � the edge containing � , and let

i
and � be the apices of � and � , respectively. Clearly,� is on � oriented towards y and � is oriented away from y . The depth of x is � o | y�} i | . Since x is not an

extremal hole, � must cut through the rhomb belonging to the edge � . The length of the piece of y i covered by
this rhomb is at least | yZ}=� |��e����� wu� | yZ} i |��e�����w � �w �
Thus, the depth of no hole along � can belong to the interval ���fqs}�q���w0���0�e� � . The corresponding statement for
out-holes can be proved similarly. �
3. Base points

Theorem 2.3 would immediately follow from Lemma 2.5, if we could show that the ratio of the largest and
smallest depths of an in-hole (and out-hole) along the same edge is bounded by a polynomial of w . It is not hard
to see that this holds for wedges rather than rhombs (and this can be used to give a direct proof of Theorem 3), but
the general statement is false. We prove instead that the depths of the intermediate holes (in-holes and out-holes)
assigned to a given edge fall into a small number of short intervals.

To formulate our result precisely, we need some preparation. We assign at most three so-called base points to
each edge, according to the following definition.

Definition 3.1. (Base points) Let � o¢¡£i be an edge of a rhomb ¤ o¢¡£ig¥.¦�§©¨ , and let � be oriented towardsi
. Let ª denote the point of � closest to

¡
, which does not belong to the interior of any member of

¨
. Let bothi

and ª be assigned to � as base points. Further, let « denote the oriented half-line (ray) starting at
¡

and passing
through

¦
. Consider all edges homothetic to � that either intersect « beyond

¦
, or intersect both « and the edge¥¬i

. If there is no such edge, then no other base point is assigned to � . Otherwise, let �N­ denote the edge with
this property that intersects « closest to

¡
. If � ­ intersects « beyond

¦
, then we say that � ­ is far from � , and setª®­ mpo �^­ ¯£« . If �H­ intersects the segment

ig¥
, then we say that ��­ is close to � , and set ª8­ mpo �H­O¯ ig¥ . In both

cases, ª ­ is the third base point assigned to � , which will be referred to as the base point forced by � . Note that
this third point is not on � . (See Figure 2.)

The depth of a base point sitting on an edge is defined as its distance from the apex.
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Using the above notation, no point of the open interval °g± can be incident to a hole. Thus, the depth of a hole
assigned to ² cannot exceed the depth of the base point ° on ² . Consequently, the depth of each hole assigned to² is between the depths of some pair of consecutive base points on ² . Although there may be many base points
along the same edge, the total number of base points is at most ³H´Eµ .
Lemma 3.2. If there are two consecutive base points on an edge ² with depths ¶¸· and ¶�¹�º`» ¹ ¶¼· , then there is at
most one intermediate hole assigned to ² , whose depth belongs to the interval ½3¶¸·H¾e¶N¹�¿�» ¹�À .
Proof: Let ²sÁ`±ÃÂ be an edge oriented toward Â . Choose two consecutive base points on ² with depths ¶�·ÅÄ;¶�¹�¾
respectively. Let Æ be an (intermediate) hole assigned to ² with depth ¶ satisfying ¶=ºÇ¶�· . We prove that for
every other hole assigned to ² , whose depth ¶ È is larger than ¶ , ¶�ÈÊÉ>¶ ¹ ¿�» ¹ holds.

As before, let Ë and Ì be the two consecutive segments on the boundary of Æ causing Æ to be assigned to ² .
Let the segment Ì belong to the edge Í with apex Î . Let Ï be the common endpoint of Ë and Ì . Clearly, Ë is on ²
and Ì is oriented away from Ï .

The proof is based on the following claim:

Claim: There is a base point ° on ² of depth at least the depth of Æ such that the angle Â�°�Î is at least Ð¹�Ñ .
Proof: We assume without loss of generality that ² is vertical and that its upper endpoint is Â . As Ì is oriented
away from Ï , and Æ is not an extreme hole, we find another edge ²ÓÒ , homothetic to ² , which intersects Ï�Î .
Consider the sequence of edges ² Ò ¾Ô²�·H¾Ô²�¹�¾^Õ^Õ^Õ�¾Ô²^Ö , where ²H× is the edge homothetic to ² , containing the base point
forced by ²H×(Ø@·£½f³YÙXÚ�ÙÜÛ À . The last edge of this sequence, ²EÖ , forces no base point. (See Figure 3.) Let ²E×
be the edge of the rhomb Ý�×ÅÁÞ±®×ßÂ2×ßàÊ×âá2×sã>ä with ²H×åÁÞ±g×3Â�× oriented toward Âæ× , and let çè× be the half-line
starting at ±é× and passing through á¬× ( ê©ÙëÚåÙëÛ ). Notice that çè× intersects ²�×+ì2· for Ú
Ä�Û , and denote this point



of intersection by í�î+ï2ð . The intersection of ñ and òEó is denoted by í�ó . Let ô be the directed polygonal pathõ í�ó÷ögó÷íøðeö�ð¸ù^ù^ùeí�úûögú followed by the half-line üýú . Since all segments of ô are pointing downward and are at
least as steep as ñ , í must lie above ô .
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We distinguish two cases.

Case I: òsþ¢ò î+ÿ for some ����� ó ��� .
The point í�î+ÿ��£ô lies below í on the same vertical edge ò . Let 	 denote the base point on ò forced by òÓî+ÿ�
@ð .

If ò is far from ò�î ÿ 
@ð , the point 	 coincides with í�î ÿ , so it is below í . If ò is close to ò�î ÿ 
@ð , the open intervalí�î�ÿ�	 belongs to the interior of 
�î+ÿ�
@ð , and the point í incident to � cannot lie on this interval. Therefore, in this
case 	 cannot be above í either.

For ��������� , denote by � î the strip between the parallel lines � î��~î and ö î��2î . Notice that if ò î is close to ò î�
@ð
( ��������� ), then �èî contains �èî�
@ð .

Let �����-ð! "�$#% '&(&(&) "�$* be the sequence of indices ���"�+�,��ó , for which ò�- is far from ò�-.
@ð , and let�Hóåþ/� . For �������1032 the portion of ô between í4-6587:9 to í;-65 is contained in �:-65<
@ð . Thus, í=-�5>7?9 is below the line�@-65<
@ð � -65<
@ð , while í=-65 is above the same line. This implies that the angle í�-6587:9�í;-65A�@-65 is larger than BDCFE�GIHKJ . If



L$M)NPORQ
, we have S=T6U N S�VXW NPY . Otherwise, S=T6U�Z\[KV8W�]_^ , while

Y
is on the upper boundary of this strip, so the

angle S=T U Ya` is at least bDced . Since we have bounded the slope of each portion of f , combining these bounds, it
follows that the angle

`�Y4g
is at least bDcFh�iIdKj . This completes the proof of the Claim in Case I.

Case II: k!lZnmok.VqpKrts O s�u�v .
The polygon f now cannot cross k . Otherwise, let

O s�u be the largest index, for which the half-line w V intersectsk . Let SyxV8z{^ denote this intersection point. We did not consider k , when we determined the base point forced byk(V . Thus, S xV>z{^ ` must be covered by |}V , contradicting the fact that there is a hole at S .
So k must lie entirely above f . Let ~ denote the line containing k , and let � be the intersection point ~���f .

Suppose that � belongs to the non-vertical segment of f starting at the point ��V W�� for some
O�Q s�u .

Let
L

be the largest index between (and including) r and
O�Q

, for which k�T is far from k�T(]_^ . If there is no such
index, set

L�N��
. It follows in exactly the same way as in the previous case that the angle

g S�T ` T is at leastbDcFh�iIdKj . Let
Y

denote the point of k closest to � , which does not belong to the interior of any rhomb in � . Recall
that, according to Definition 3.1,

Y
is a base point, and notice that it does not lie above S .

If ~ intersects |}V W , the point S=T is below the line
` V W(� V W , while

Y x is on this line or above it. Therefore, in this
case the angle SaT Ya` is at least bDced . If ~ does not intersect |!V8W , consider the portion of f between S4T to � , and
notice that it lies in the strip between the lines

` V8W � V8W and �=V8Wo�{V8W . Thus, S=T is below the line
` V8Wo�{V8W but � and

thus
Y

is above the same line. This implies that in this case the angle S T Ya` is also at least bDcFh�iIdKj . Combining
this with the same lower bound for the angle

g S�T ` T , we obtain that the angle
`�Y4g

is at least bDcFh�iIdKj . This
completes the proof of the Claim. �

Now we finish to the proof of Lemma 3.2:
The depth of the base point

Y
is larger than �@^ thus we have � `��;Y �:���:� . Using the law of sines for the trianglegtY S , we obtain � Y�� S���s'� g"� S���c����>������ . Since � was assigned to k , we have that � `�� S��Ds�� g � S�� .

Therefore, � � s"� `¡�¢Y � N � `P� S��$£¤� S �+Y �?ss ¥ r�£ r���>� �����¦ � gP� S��:s§d�� g/� S��©¨
Note that the rhomb in � belonging to the edge ª covers an interval of k , whose length is at least � g4� S��6���>��h<bDcedKj«��3�.ced � . As S is an endpoint of this interval, any hole assigned to k , whose depth � x is larger than the depth� N � `¡� S�� of � , must satisfy the inequality � x­¬ � � ced � , hence the lemma is true. �
Proof of Theorem 2.3: According to Lemma 2.5, the depths of the intermediate holes assigned to an edge are
separated from each other by ®�h¯r$cedKj in a logarithmic scale. Thus, by Lemma 3.2, the number of holes assigned
to an edge is °!h�d²±8³I´µdKj times the number of base points on that edge. Thus by Lemma 2.4 the total number of
intermediate holes is °}h�¶Dd²±8³I´)dKj . Since the number of extreme holes is °!h�¶DdKj , Theorem 2.3 follows. �
4. Generalizations—Proofs of Theorems 2 and 3

Proof of Theorem 2: Obviously, the triangles · �(z{^ � ¨(¨(¨ � ·¹¸ are bDcFh�d}£�r$j -fat. By Theorem 1, they determine°}h�¶Dd²±8³I´)dKj holes. By adding the first d triangles, we increase the number of intersection points and, therefore,
the number of holes by °}h�¶DdKj .

As for the construction, let ~ N'º dKcei�» and arrange · x^ � ¨(¨(¨ � · x¼ so that any two intersect in a single point ½ , and all
of them are contained in a right angle wedge ¾ with apex ½ . This is possible, because we have ¿ ¼V>À{^ÂÁ V�Ã bDcei .
Let Ä be the distance of ½ from the nearest other vertex of ·;x^ � ¨(¨(¨ � ·Åx¼ . We place ·�xV for

O ¬ ~ so thatÆ · xV meets both rays bounding ¾ but does not contain ½ ;



Ç+ÈÅÉÊ�Ë�Ì is contained in the ball of radius Í around Î ;Ç the sets È ÉÊ�Ë\Ì are pairwise disjoint for Ï�Ð1Ñ .
All of these conditions can be satisfied by placing the triangles one by one so that we put a vertex of the next
triangle, corresponding to an acute angle, sufficiently close to Î . The obtained configuration has Ò<Ñ3Ó¢Ô$Õ�Ò�Ö4Ó�Ñ�×ØÔ$Õ
holes inside Ì . This quantity is Ù�Ò�ÖDÚKÕ , as required, unless Ñ�ÛÜÔ . In the latter case, we arrange the trianglesÈÅÉÊ Ò�Ï)Ð¡Ô$Õ so that all of them have a point in common outside È�ÉÝ , and their intersections with È�ÉÝ are distinct single
points. These triangles determine at least Ö%Ó�Ô holes. Þ

We continue with Theorem 3. (Notice that it is a simple special case of Theorem 4.)

Proof of Theorem 3: First we prove ß!Ò�ÖDÚ«à8áIâ)ÚKÕ bound for the number of holes determined by the convex wedges
in ã . As we have indicated before, the direct proof of this bound along the lines described in Section 2 is simpler
than the proof of Theorem 1. However, at this point it is more convenient to deduce it from Theorem 2. Let ä be
the number of holes determined by the wedges. First we split each wedge with an obtuse angle into two congruent
wedges. Then we replace each wedge by a triangle, intersecting it with a half-plane that contains all intersection
points between the boundaries of the original wedges. We make sure that all new angles introduced exceed åDæoç .
Following this procedure, we obtain a family of at most è�Ö triangles that determine at least äéÓ�Öê×nÔ holes, where.
The value Ú for this new family (as defined in Theorem 2) is at most ë larger than the corresponding value for the
original family of wedges. Applying Theorem 2 to the triangles, we obtain the desired bound for wedges.

To prove the same upper bound for the boundary complexity, notice that ì Êµí åDæFÒ�Úa×¡Ô$Õ for ÏéÐ¡Ú . As in the
proof of Theorem 2, we can disregard the first Ú wedges, because their contribution to the boundary complexity is
at most ç3Ú:Ö . We proceed as in [MP94]. We partition the remaining wedges into èIÚ;×�è classes so that all wedges
belonging to the Ï th class contain in their interior a half-line having a èeåDæFÒ�èIÚt×+èîÕ positive angle from a reference
direction. Now every vertex of the union of all wedges in a given class is either the apex of a wedge or is the
last vertex along one of the open half-lines bounding the wedges. Thus, the boundary complexity of this union is
linear in the number of wedges in the class. Using the Combination Lemma of [EG90] (see also Lemma 2.1 in
[MP94]) to merge the classes in a binary tree-like fashion, it follows that the boundary complexity of the union of
all wedges in all classes is ß}Ò�ÖDÚéà8áIâFï�ÚKÕ . To get rid of the extra à8áIâ²Ú factor, we consider the family of wedges ã É
we obtain at an intermediate step through the combination process. It is the union of some ð of the original èIÚê×nè
families. We can make sure, that these are ð consecutive families. Applying an affine transformation, if necessary,
we can achieve that the angle of every wedge belonging to these families is Ù�Ò¯Ô$æ�ð?Õ . Since such a transformation
does not change the number of holes, we obtain the better bound ß}Ò�ñ!ð)à8áIâ�ð:Õ for the number of holes determined
by ã É , where ñ is the number of wedges in ã É . Using the combination lemma with this better bound, we conclude
that the boundary complexity of ã is ß}Ò�ÖDÚ²à8áIâ²ÚKÕ .

To verify the last statement of Theorem 3, we use almost the same construction as in the proof of Theorem 2.
The only difference is that now we have to start with a wedge Ì whose angle is smaller than å\ÓØì²ò , otherwise
no wedge of angle ì�ò could intersect it in the required manner. Let Ñ«ó§ô õFö�Ö{æeèo÷ be the largest integer satisfyingønùÊ>ú Ý ì Ê�û åêÓ}ì{ò . Clearly, we have Ñ í�ü}ýÿþ���� Ò¯Ô­Ó}ìqò æ�åDÕ¯Ú��Iö�Ö{æeè�� . Select Ñ wedges in Ì with angles ì Ý ö������oö�ì ù
such that the intersection of any two is the apex Î of Ì . Then choose Ö�ÓØÑ wedges of angles ì ù
	 Ý ö������.ö�ì{ò such
that Ç each of them intersects both boundary half-lines of Ì ;Ç none of them contains Î ;Ç their intersections with Ì are pairwise disjoint bounded sets.

The resulting family determines Ò<Ñ Ó�Ô$Õ�Ò�Ö�Ó�ÑF×�Ô$Õ holes in Ì . This is Ù�Ò�Ò<å�Ó�ì�ò Õ�ÖDÚKÕ , unless Ñ��¡Ô . In the latter
case, we use a trivial construction similar to the one described at the end of the proof of Theorem 2: we pick Ö4Ó¢Ô



wedges which intersect the remaining wedge in distinct single points. This family determines at least 
���� holes.�

5. Wedges of angles close to � —Theorem 4

This section is devoted to the proof of Theorem 4.
First we establish the upper bound ������� for the number of holes in � , where ����� ��!#"%$'&)(%"*�,+.-/1032
4657" / .

The same bound on the boundary complexity then follows directly from the Combination Lemma of [EG90]: by
Theorem 3, the boundary complexity of the subfamily consisting of the ! smallest wedges in � is ����!#"%$'&)(%"8� , the
boundary complexity of the subfamily consisting of the next �9�:! wedges of � is ���;�<� , while the boundary
complexity of the family of the 
=�>� largest wedges of � (whose angles are at least ? ) is clearly ���;�<� , as it
determines a single convex hole.

We proceed as in the proof of Theorem 1, but now we have to deal with different angles.
Fix a reference direction and say that a wedge is small if its angle is ?A@CBED for some F<G B and if the angles

between its boundary rays and the reference direction are integer multiples of ?A@CB D . A wedge is large if its angle
is ?H�>BC?A@CB)D for some FIGJB and if the angles between its boundary rays and the reference direction are integer
multiples of ?A@CBKD .

Replace each of the first ! wedges in � by the maximal small wedge with the same apex it contains. Replace
each of the next �L�M! wedges of � by the maximal large wedge with the same apex it contains, and omit the last

N�M� wedges. Let �PO denote the family obtained in this way. By Lemmas 2.1 and 2.2, we have

Q ���R�TS:U����R�VS:UW��� O �VS Q ��� O �X�W�ZY
Thus, when passing from � to � O;[ the number of holes cannot decrease by more than � .

Let \ O/ denote the angle of the wedge replacing the ] th wedge in � ( ]TS:� ), and let " O and " O/ be defined for � O
in exactly the same way, as " and " / were defined for � ( �^S_]`S_� ). Notice that \ / @ba�c:\6O/ S:\ / , so "dO3S_ae"`�gf .
Furthermore, we have ?g�W\ O/ cha7��?H�M\ / � , which implies that " O/ SJ�ji)" / ���jk . Thus, it is sufficient to prove the
desired upper bound on the number of holes determined by the modified family ��O . For notational convenience,
from now on we assume that � O ��� [ i.e., that � consists of ! small and �l�M! large wedges.

We use the terms wedge, apex, ray, and hole only for the wedges in � , their apices, their rays, and for the holes
determined by them. Assume without loss of generality that no three rays have a point in common. We say that
two rays are homothetic if they are corresponding sides of two wedges which are translates of each other.

A triplet �;m [on 5 [onqp � is called a vertex if m is the intersection point of two distinct rays, n 5 and nqp , and it lies
on the boundary of a hole. Our plan is to define several special types of vertices, to bound the number of vertices
of each type separately, and finally to bound the number of holes by showing that each hole has a point on its
boundary, which appears in a vertex of some special type. A vertex �;m [on 5 [onqp � is said to be small (large), if both
of the wedges supporting n 5 and n p are small (resp., large) wedges. The number of small and large vertices can
be bounded by the boundary complexity of the family consisting of all small or all large wedges in � , and, by
Theorem 3, we have:

Claim 5.1. There are ����!#"r$1&)(V"8� small and ���;�<� large vertices.

In what follows, when we consider a vertex �;m [on 5 [onqp � , the wedges supporting n 5 and nbp will be denoted by s 5
and s p , respectively. The apices of s 5 and s p , will be denoted by t 5 and t p , respectively. If a vertex is neither
small nor large, then it is said to be hybrid. For a hybrid vertex �;m [on 5 [onqp � , one of s 5 and s p is small and the
other is large. In this case, let ] and u denote the indices of the corresponding small and large elements of � , resp.,
with angles \ / �v?A@CB D and \3wx�v?y�zBC?A@CB|{ , resp., where �}S_]~S:! , !8�v��Szu�S_� , F^GhB and �TG:B .

A vertex �;m [on 5 [onqp � is called strongly extremal if it is the first or last vertex along n 5 or nqp . Obviously, we have



Claim 5.2. There are at most �)� strongly extremal vertices.

A hybrid vertex �;�H�o�e�q�o�q�q� is said to be blunt if ����� . Considering the canonical properties of the wedges in�
, we see that if a blunt vertex �;�<�o�e�j�o�b�q� is not strongly extremal, then the boundaries of the wedges meet in

three vertices, and � is the middle one (along either boundary). Furthermore, if ��� is large we find that �|� is
perpendicular to the angular bisector of � � (see Figure 4).
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Figure 4: Blunt vertices

We claim that along a ray bounding a large vertex there is at most one blunt vertex which is not strongly
extremal. Suppose, for contradiction, that �;�<�o���j�o�q�q� and �;�<�o�)�q�o�C�� � are both blunt and not strongly extremal and
�z� is a large wedge with apex �T� . We may also assume that � belongs to the interval � � �`� . Here the ray � �� is
parallel to �b� , so the wedges �W� and �Z� together cover the part of �K�� on one side of �<� (see Figure 4). Therefore,
�;�H���o� � �o�C�� � must be strongly extremal, a contradiction. Therefore, the number of blunt vertices which are not
strongly extremal is at most �|� , which implies

Claim 5.3. The total number of blunt vertices is ���;�<� .
A hybrid vertex �;�H�o�e�q�o�q�q� is said to be sharp if �}�_�����'�)�%� .

Claim 5.4. The number of sharp vertices is �����.��¡ 3¢¤£ � � � � .
Proof: Let �;�<�o�K�j�o�q�q� be sharp. We have ¥V¦�� � , for otherwise none of the angles of the first � � ��§ wedges in�
would exceed ¨A©C�Kª«�:¨A©C�|¬ £�­¯®o°E± , and their sum would be less than ¨�²�³ �x´ �C¨A©C�|¬ , contradicting the definition

of � � . Thus, there are at most ���#� � � sharp vertices involving the µ th wedge in
�

(µg�,¶ ), and Claim 5.4 follows.·
A vertex �;�H�o� � �o� � � is called extremal, if it is the first or the last vertex along � � among all vertices of the form
�;� � �o�)�j�o� �� � , for which � �� is homothetic to �|� .
Claim 5.5. The number of extremal vertices is ����¸�� .

Proof: It is sufficient to establish this bound for those hybrid extremal vertices which are neither strongly
extremal, nor blunt, nor sharp. Fix such a vertex �;�H�o�d�q�o�q�q� . We distinguish two cases.

Case i: �W� is small and �.� is large. For a given small wedge �_� (which determines � ), there are at most �'�)�%�~�Z§
possible values for � , without the vertex being sharp or blunt. For a given � , there are at most four homothecy



classes possible for ¹Mº without the vertex being strongly extremal. Thus, each ray of a small wedge is involved
in at most »½¼'¾)¿TÀ}ÁW» extremal vertices satisfying the condition of Case i. Therefore, the total number of extremal
vertices of this type is Â�Ã�Ä|¼1¾)¿TÀ8Å .
Case ii: ¹WÆ is large and ¹ º is small. Fix ¹WÆ to be the Ç th wedge in È . This determines the value of É . For a
given value Ê*Ë_É , there are less than Ì�ÍÏÎ8ÐÒÑ º possible homothecy classes for ¹Mº without the vertex being strongly
extremal. Notice that if Ó among these classes for all ÊNË�É are nonempty then the sum of Ô;Ó�ÕCÌ|Ö of the smallest
angles is less than ×ÙØ_ÚXÛNÜLÌC×AÕCÌ|Ð . This implies ÓÙÜlÂ�Ã#À|ÛbÅ . The total number of extremal vertices involvingÝ Æ , which satisfy the condition in Case ii is Â�Ã#À)ÛbÅ , and the total number of all extremal vertices of type 2 is
Â�ÃßÞ=àá1â3ã Ñ Æ À á Å . ä

A vertex Ã;å<æ Ý Æqæ Ý º Å is called covered, if the interval å<ç%Æ is at least as long as the interval å<ç º and ç~Æ and ¹ º
lie on different sides of Ý º .
Claim 5.6. The number of covered vertices is Â�Ã�è�Å .

Proof: It is enough to consider those hybrid covered vertices which are neither extremal, nor sharp, nor blunt.
Let Ã;åHæ Ý Æqæ Ý º Å be such a covered vertex. As Ã;åHæ Ý Æqæ Ý º Å is not extremal, there exists another vertex Ã;å.é�æ Ý Æjæ Ý éº Å for
which å é belongs to the interval å<ç Æ and the ray Ý éº is homothetic to Ý º . Here the wedge ¹ éº , whose boundary ray
is Ý éº , covers all of Ý Ì expect an interval ç`ºqê . Our goal is to show that ¹ Æ covers a sufficiantly large subinterval
å<ë of ç6ºqê . Considering these intervals å<ë for different covered vertices involving Ý º , we find that they cover
any point at most twice. Therefore, any lower bound on the lengths of these intervals yields an upper bound on
their number. As in the proof of the previos claim, we distinguish two cases.

Case i: ¹ Æ is small and ¹.º is large. By the relative position of the wedges ¹ Æ , ¹=º , and ¹�éº , we have ì ç�ºbêIì�Ü
Â�ÃÏì å<ëíì¯ÕCÌ)ÍÏÎ8ÐîÅ . This implies that Ý º appears in Â�Ã#À|ÛTÁ,ïqÅ covered vertices which satisfy the condition of Case i.
Therefore, the total number of covered vertices of this type is Â�Ã;ð Á Þ àÛ â3ã Ñ Æ ÀqÛ|Å .
Case ii: ¹Zº is small and ¹ Æ is large. Here we have to use that Ã;å<æ Ý Æ æ Ý ºqÅ is not sharp, so that Ê<ñ�É`Á�¼'¾)¿TÀ .
As in Case i, one can show that ì çòºqêIì7ÜóÂ�Ã#À�ì å<ëHì¯Å . Hence, Ý º appears in Â�Ã#À8Å covered vertices satisfying the
condition of Case ii, and the total number of covered vertices of this type is Â�Ã�Ä�À8Å . ä

The proof of the upper bound in Theorem 4 can now be completed by showing that each hole determined by
È has a point on its boundary, which appears as the leading term of a strongly extremal or a covered vertex.
Indeed, if no such strongly extremal vertex exists, then the hole must be a (bounded) convex polygon. Consider
the orientation of the edges inherited from the rays oriented toward their apices. If it is not cyclic, we find a
vertex å with two outgoing edges. Obviously, either Ã;å<æ Ý Æbæ Ý º Å or Ã;å<æ Ý º æ Ý ÆôÅ is covered, where Ý Æ and Ý º are
the two rays containing å . We deal with the cyclically oriented case in exactly the same way as in the proof of
Theorem 1: assuming that no vertex around the hole is covered, we obtain several inequalities, whose sum gives a
contradiction. This concludes the proof of the upper bound in Theorem 4 on the number of holes as well as on the
boundary complexity of È .

It remains to describe a construction for the lower bound. Choose an õrËhö such that õø÷ùÃ�×�Ø�Ú á Ø ÞZú¡ûÛ â Æ Ú Û ÅoÕbü
for all ý , and let þjÿ be a fixed horizontal line. By the direction of a half-line � from a point ç on þ)ÿ we mean the
angle between the half-lines � and the part of þ|ÿ to the right of ç . We place the wedges ¹ á with angles Ú á
Ã;ý½ÜJïCæ������|æoð é Å one by one, according to the following rules.

1. The apex of ¹ á is on þ�ÿ sufficiently to the right, so that all intersection points of boundaries of wedges
already placed are outside and to the left of ¹ á ;

2. ¹ á is above þ�ÿ ;
3. the direction of the right ray of ¹ á is õ larger than the direction of the left ray of ¹ ú¡û , or it is simply õ if
À á Üvö .



By the choice of ��� and � , all the above requirements can be satisfied. The value �	�
����
������������������������ of
the resulting family (see the beginning of Section 2 for the definition) is the bound in Theorem 4 for the number
of holes. For �! #"%$ , we place a wedge of angle &'� such that it does not contain any intersection point between
boundaries of �)( for *,+-" $ , but one of its boundary rays is on .�/ and contains the apices of all �0(1�2*3+4" $ � .
6. Concluding remarks, applications

As in [MP94], Theorems 1 and 2 yield the following upper bounds for the boundary complexity of a family of
triangles.

Corollary 6.1. The boundary complexity of any family of 576 -fat triangles in the plane is 8:9�; <=�?>2@BA�>2@BA�5C>2@BAED<3F
>2@BA D D <G�IH . Moreover, the boundary of the union can be computed in time 8 9 ;KJMLONP;< �?>2@BA�>2@BAQ5C>2@BA D<RFS>2@BA D D <B�IH .

Corollary 6.2. Let TU�V
�W'�����������XW ; � be a family of 5S ZY triangles in the plane, and let &[� denote the smallest
angle of W=�C�XY%+\�]+\5^� . Suppose _a`:&Q�3+:& D +cb�b�bd+\& ; , and let �e+V5 be the largest integer such thatfag�ih^� &j�k`-l .

Then the boundary complexity of T cannot exceed 8m�n5j�K�?>2@BAd>2@BA[5C>2@BA��]FS>2@BA D �o�O� .
Plugging Theorem 3 into the analysis of the running time of the algorithm described in [ER93], we obtain the

following two results.

Corollary 6.3. The union of a family of 5p6 -fat wedges in the plane can be computed in time 8:9 ; < >2@BAqD D< F�5C>i@BA[5 H .

A line . is called a separator for a family r of pairwise disjoint segments in the plane, if . avoids all members
of r , and there is at least one member of r on both of its sides.

Corollary 6.4. Given a family r of 5 line segments in the plane such that the ratio between the length of the
shortest segment in r and the diameter of skr is at least 6p 4_ , there is an algorithm which determines whether r
admits a separator, and finds one if it exists, in 8 9 ; < >2@BA]; < >i@BA D �< H time and 8 9 ; < >2@BA D �< H space.

M. van Kreveld [K98] extended the definition of fatness to (not necessarily convex) simple polygon. He proved
that every 6 -fat simple polygon of � vertices can be covered by 8m�t�o�[6 -fat triangles, and such a covering can be
constructed in 8m�t�u>i@BA��o� time. Therefore, Theorem 1 generalizes to 6 -fat simple polygons whose total number of
sides is 5 .

A. Efrat [E99] introduced another generalization of the notion of fatness to compact connected regions of ‘con-
stant description convexity’ depending on two real parameters. He established an upper bound on the boundary
complexity of a system of ‘fat’ objects according to this definition. The dependence of his bounds on the parame-
ters can be improved by using Theorem 1 instead of the results in [MP94].
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