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Abstract 

Let m(n) denote the smallest integer m with the property that any set of n points in Euclidean 
3-space has an element such that at most m other elements are equidistant from it. We have that 

cn 1'3 log log n <<. m(n) <<, n 3/5 fl(n), 

where c > 0 is a constant and fl(n) is an extremely slowly growing function, related to the inverse 
of the Ackermann function. (~) 1999 Elsevier Science B.V. All rights reserved 

1. Introduction 

One o f  Erd6s 's  favorite problems, raised more than half  a century ago [4,8] was the 

following. What  is the maximum number, f a ( n ) ,  of  times that the unit distance can 

occur among n points in Euclidean d-space? In [1], we asked a more general question. 

Given a set P = { P l  . . . . .  pn} of  n points in ~d and positive real numbers ~1 , . . . , ~ , ,  

let mi denote the number o f  points in P whose distance from Pi is ~i. Determine 

/ /  

Fd(n)  = max ~ mi, 
i=1 

where the maximum is taken over all n-element point sets and all possible choices o f  

the numbers ai. In an extremal configuration, 0~i must be one o f  the m o s t  'popular '  

distances from Pi, i.e., a distance which occurs the largest number o f  times. Clearly, 

Fd(n)>~2 fd (n )  for every d and n. 
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In the planar case, it seems to be hard to determine the asymptotic behavior of  the 

function F2(n). It is conjectured that the right order of  magnitude of both F2(n) and 
f2(n) is O(nl+C/l°gl°gn), for a suitable constant c > 0 .  However, for d > 2 ,  we have 
asymptotically tight estimates [1,5,6]: 

F3(n)=n2 ( ~  + o ( 1 ) ) ,  

F a ( n ) = n  2 1 - [d/2-----J + o ( 1 )  for every d~>4. 

In case d>~4, the bound for Fa(n) is realized by a well-known construction of  

H. Lenz: take [d/2J pairwise orthogonal circles of  radius 1 /v~  through the origin, and 
place n points on them as evenly distributed as possible. Setting ei = 1 for i = 1 . . . . .  n, 

we obtain that 

mi = n 1 - [d/2~--J + o(1 ) 

for every i. That is, from each point the most popular distance is the unit distance, 

and it occurs roughly the same number of  times. 

The construction showing that the bound for F3(n) can be achieved is less symmetric. 

Take [n/21 points, Pl . . . . .  Pin~2], on a line l, and place the remaining [n/2J points, 
P[n/2]+l  . . . . .  pn, on a circle C around a point of  l, so that the plane of C is orthogonal 

to l. For every i ~< In/2], let (~i be the distance between pi and C. For i > In/2], ~i 
can be arbitrary. Then mi =n  (1 + o(l ) )  for every i<~ Fn/2q, and mi < 4  otherwise. In 
this case, the sum of the number of  occurrences of  the most popular distances over all 

points is as large as possible, but for about half of  the points even the most popular 

distances occur at most 4 times. 
This leads to the following question. What is the largest number m = m ( n ) ,  for 

which there exist points Pl . . . . .  pn in ~3 and positive reals ~1 . . . . .  c~, such that m~ ~>m 

for every i? Equivalently, we can ask: 

Problem. What is the smallest integer m = m(n) with the property that any set o f  n 
points in ~3 has an element such that fewer than m other elements are equidistant 
from it? 

At first glance, it is not even clear that m(n) = o(n) holds. In a properly scaled cubic 
lattice of  n points, from each point there are at least cn 1/3 log log n other points at unit 
distance [5]. Thus, m(n) ~cn  1/3 log log n for some positive constant c. 

Here we show 

Theorem 1. For every e>0 ,  we have m(n)=o(n3/5+':). 

We present two simple arguments. The first one uses an easy but perhaps interesting 
generalization of an old theorem of K6v~iri et al. [7] to directed graphs. It gives the 
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somewhat weaker bound m(n)= O(n 2/3) (see Section 2). For more extremal problems 

and results for directed graphs, consult [2]. 
Our second approach is based on a result of Clarkson et al. [3] on the number of 

incidences between points and spheres (Section 3). 

2. A Turfin-type result for directed graphs 

Let G be a directed graph with vertex set V(G) and edge set E(G) C_ V(G) × V(G). 
Note that the same pair of points may be connected by two oppositely oriented edges. 
We would like to establish an upper bound on the number of edges of G, under the 
assumption that G does not contain certain so-called forbidden subgraphs. 

For any disjoint sets Vl . . . . .  Vk, construct a directed graph R(VI . . . . .  Vk)=R with 
vertex set V ( R ) =  oik=l Vi and edge set 

k--1 

E(R) = 0 Vi x Vi+l. 
i=1 

R is called a (I Vii . . . . .  I Vkl)-road. A (1, . . . ,  1)-road is a path. 

Theorem 2. Let G be a directed graph on n vertices, and let s, t be positive integers. 
I f  G contains no (1, s, t )-road as a subgraph, then it has a vertex o f  out-degree at 

. ~-~/s > 0 is a constant. most cs, tn , where Cs, t 

Proof. For s - -  1 the statement is true, so we can assume that s t> 2. Let v be a vertex 
of G with minimum out-degree m, and let M denote the set of  endpoints of the edges 
of G emanating from v (IMI =m). Let G~, be the subgraph of  G with vertex set 
V(Gv) = V(G), consisting of all edges of  G whose starting points belong to M. 

Let K denote the number of  (s, 1)-roads in G~,. We clearly have 

uEV(G) 

d+ (u) = IE( )I >~ lMlm = m 2, (2) 
ucV(G) 

where d+(u) is the in-degree of u in G~,. Using the assumption that G contains no 
(1,s,t)-road, we obtain that every s-tuple of  M is the set of starting points of at most 
t -  1 (s, 1)-roads and possibly one other (s, 1)-road ending at v. Therefore, 

K<~t(  m)s <tmS" (3) 

Let V0 denote set of those vertices u, for which d+(u)>~s. We can assume that V0 
is not empty, otherwise (2) implies that m <(sn) 1/2, and we are done. Thus, using (1), 
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(2), and Jensen's inequality, we obtain 

K >~ Z (d*~u))  >~Cs Z (d+(u) )S >~C~lVo[(m2/[Vo,)S, 
u~ Vo uC Vo 

where Cs>0  is a constant. A comparison with (3) gives 

tmS > Csl Vol(m2 /[ Vo[ ) s, 

so that 

m <<.(t/Cs)l/s[ go[ 1-1/~ <~ (t/Cs)l/Sn l-l/s, 

completing the proof. 

Return now to the problem described in the Introduction. Let P =  {pl . . . . .  pn} be 
a set of  n points in ~3, and let ~1 . . . . .  ~, be positive reals. Assume that for every i, 

there are at least m elements of  P at distance ~i from Pi. Construct a directed graph 
G on the vertex set V ( G ) = P  by drawing an edge from Pi to pj if their distance is 

O{ i (l <<.i, j<<.n). 
It is easy to verify that G cannot contain a (1,3, 3)-road R(V1, Ve, V3 ), otherwise all 

three elements of  V3 would have to lie on the intersection of three spheres centered at 
the points of  V2, which is impossible, because these points are not collinear. Thus, we 
can apply Theorem 2 to conclude that m = m(n)= O(n2/3). 

3. Incidences between points and spheres 

We say that a set of  spheres is in general position, if  no three of  them pass through 
the same circle. Combining the K6v~iri-S6s-Tur~in theorem (a weaker form of  Theo- 

rem 2) with a clever probabilistic argument, Clarkson et al. [3] established the following 

result. 

Theorem 3 (Clarkson et al. [3]). The number of  incidences between m spheres in gen- 
eral position and n points in ~3 cannot exceed 

C(m3/4n3/afl(m3/n) + m + n), 

where C > 0 is a constant and fl is an extremely slowly increasing function, related 
to the inverse of  the Ackermann function. 

Proof of Theorem 1. Let P = { P l  . . . . .  p,,} be a set of  n points in E3, and let Si denote 
a sphere of  radius ~i around Pi (1 <~ i <~ n). Suppose that each Si passes through at least 
m elements of  P. Assume without loss of  generality that S, passes through pl . . . . .  p,~. 
Since no three points of  a sphere are eollinear, no three spheres Si, Sj, Sk (1 ~<i < j  < 
k<~m) have a circle in common. In other words, $1 . . . . .  Sm are in general position. 
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Hence, we can apply the last Theorem to spheres S 1 . . . . .  am and points pl . . . . .  pn, 
to conclude that the number of  incidences between them is at most 

C(m3/4n3/4 fl( m3 /n ) q-- m -b n ). 

On the other hand, by our assumption, this number is at least m 2, because each 

Si (1 <~i<~m) is incident to at least m points. Comparing these two bounds, we obtain 
m < lOCn3/Sfl(n), which completes the proof. 

The above argument shows that finding more than m non-collinear elements in P 
would lead to a better upper bound on re(n). 
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