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ABSTRACT

It is shown that any two-colored set of n points in general position in the plane can be
partitioned into at most [”TH] monochromatic subsets, whose convex hulls are pairwise
disjoint. This bound cannot be improved in general. We present an O(nlogn) time
algorithm for constructing a partition into fewer parts, if the coloring is unbalanced, i.e.,
the sizes of the two color classes differ by more than one. The analogous question for
k-colored point sets (k > 2) and its higher dimensional variant are also considered.

Keywords: Colored point sets, partitioning algorithm, matching algorithm, Davenport-
Schinzel sequence.

1. Introduction

A set of points in the plane is said to be in general position, if no three of its
elements are collinear. Given a two-colored set S of n points in general position in
the plane, let p(S) be the minimum number of monochromatic subsets S can be

partitioned into, such that their convex hulls are pairwise disjoint. Let

p(n) = max{p(S) : S C R? is in general position , |S| = n}.

*A preliminary version of this paper appeared in the Proceedings of the 7th International Work-

shop, WADS 2001, Providence, RI, USA, August 2001, 264-275.
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The following related quantities were introduced by Ron Aharoni and Michael
Saks [8]. Given a set S of w white and b black points in general position in the
plane, let g(S) denote the number of edges plus the number of unmatched points
in a largest non-crossing matching of S, where every edge is a straight-line segment
connecting two points of the same color. Let

g(n) = min{g(S) : S C R? is in general position, |S| = n}.

Aharoni and Saks asked if it is always possible to match all but a constant number
of points, i.e., if g(n) < n/2 + O(1) holds. It was shown in [8] that the answer to
this question is in the negative. However, according to our next result (proved in
Section 2), this inequality holds for p(n). In other words: one can partition a set of
n points in the plane into n/2 + O(1) monochromatic parts whose convex hulls are
disjoint; however if the size of each part is restricted to at most two points, this is
not possible (there are configurations which require (1/2 + §)n parts, where § is a
positive constant).

Theorem 1 Let p(n) denote the smallest integer p with the property that every
2-colored set of n points in general position in the plane can be partitioned into p
monochromatic subsets whose convex hulls are pairwise disjoint. Then we have

p(n) = [n;rlw :

For unbalanced colorings, i.e., when the sizes of the two color classes differ by
more than one, we prove a stronger result. Slightly abusing notation, for any w < b,
we write p(w, b) for the minimum number of monochromatic subsets, into which a
set of w white and b black points can be partitioned, so that their convex hulls are
pairwise disjoint. Obviously, we have p(w,b) < p(w + b).

Theorem 2 For any w < b, we have
w+1§p(w,b)§2[%-|+1. 1)
More precisely,
(i) if w<b<w+1 orw is even, we have p(w,b) = w + 1;
(i) for all odd w > 1 and b > 2w, we have p(w,b) = w + 2;
(#53) for all odd w >3 and w+2<b< 2w —1, we have w+ 1 < p(w,b) < w + 2.

We prove this theorem in Section 3, where we also present an O(nlogn) time
algorithm which computes a partition meeting the requirements.

For k-colored point sets with & > 3, the functions pg(n) and gx(n) can be defined
similarly. In Section 4, we prove
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Theorem 3 For any k,n > 3, let pr(n) denote the smallest integer p with the
property that every k-colored set of n points in general position in the plane can be
partitioned into p monochromatic subsets whose convexr hulls are pairwise disjoint.
Then we have

[(1—%)71%—%-‘ <pr(n) < (1— ﬁ)n—l—O(l).

We also provide an O(nlogn) time algorithm for computing such a partition.

In Section 5, we discuss the analogous problem for k¥ = 2 colors, but in higher
dimensions. A set of n > d+ 1 points in d-space is said to be in general position, if
no d + 1 of its elements lie in a hyperplane.

A sequence ajas ... of integers between 1 and m is called an (m, d)-Davenport-
Schinzel sequence, if (i) it has no two consecutive elements which are the same,
and (ii) it has no alternating subsequence of length d + 2, i.e., there are no indices
1<i1 <is<...< id+2 such that

aj, = Qi3 = Q5 = ... = Q, az’2:ai4:ai6:"':ba

where a # b. Let A\j(m) denote the maximum length of an (m,d)-Davenport-
Schinzel sequence (see [4], [14]). Obviously, we have A\;(m) = m, and it is easy to
see that A2(m) = 2m — 1, for every m. It was shown by Hart and Sharir [9] that
As3(m) = O(na(n)), where a(n) is the extremely slowly growing functional inverse
of Ackermann’s function, and that this estimate is asymptotically tight. They also
proved that Ag(m) is only slightly superlinear in m, for every fixed d > 3. (For the
best currently known bounds of this type, see [1].)
For any fixed d, let

pa(n) = min{m : Agy(m) > n}.

Thus, we have that

) = |52

2
and pg(n) is only very slightly sublinear in n, for any d > 3.

Theorem 4 For any n > d > 2, let p'D (n) denote the smallest integer p with the

property that every 2-colored set of n points in general position in d-space can be

partitioned into p monochromatic subsets whose convexr hulls are pairwise disjoint.
For a fixed d > 2, we have

(i) P9 (n) <% +0(1);

(i) p'D(n) > pa(n).
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2. Proof of Theorem 1

We prove the lower bound by induction on n. Clearly, we have p(1) > 1,
p(2) > 2. Assume the inequality holds for all values smaller than n. Consider a set
S, of n points placed on a circle, and having alternating colors, white and black
(if n is odd, there will be two adjacent points of the same color, say, white). We
call this configuration alternating. Denote by h(n) = p(S,) the minimum number
of parts necessary to partition an alternating configuration of n points. Clearly, we
have p(n) > h(n).

Assume first that n is even, and fix a partition of S,. We may suppose without
loss of generality that this partition has a monochromatic (say, white) part P of
size | > 2, otherwise the number of parts is n. The set S, \ P falls into [ contiguous

alternating subsets, each consisting of an odd number, ni,na,...,n;, of elements,
such that

i=l i=l

Zni—}—l:n, or Z(n,~+1)=n.

i=1 i=1
Hence, by induction,

i=l i=l

51 N> 1 n,-+1:1 Q:[n+1w
h(n) > +;h(n,)_ +i:1 5 +5 5|

as required. If n is odd, let P denote one of the two adjacent white points of S,.
Then

h(n) = h(Sa) > h(Sa —{P}) = h(n —1) > +1 2

n—1 _n+1_ n+1
2 2 )

To prove the upper bound, we also use induction on n. Clearly, we have p(1) <
1, p(2) < 2. Assume the inequality holds for all values smaller than n. If n is even,
(n—1)+1 n n+2_[n+1"

14— =
2 +2 2 2

p(n) <p(1) +p(n—1) <1+

Let n be odd. Consider a set S of n points, n = w + b, where w and b denote the
number of white and black points respectively. Suppose, without loss of generality,
that w > b+ 1. If conv(S), the convex hull of S, has two adjacent vertices of the
same color, we can take them as a monochromatic part and apply the induction
hypothesis to the remaining n — 2 points. Therefore, we may assume that conv(S)
has an even number of vertices, and they are colored white and black, alternately.
Let z be a white vertex of conv(S), and consider the points of S — {z} in clockwise
order of visibility from z. By writing a 0 for each white point that we encounter and
a 1 for each black point, we construct a {0, 1}-sequence of length n — 1. Obviously,
this sequence starts and ends with a 1. Removing the first and the last elements,
we obtain a sequence T' = agay . ..a, 4 of (even) length n — 3.

The sequence T consists of k = w — 1 zeroes and [ = b — 2 ones, where k — [ =
(w—1)—(b—2) > 2, k+I1 = even. According to Claim 1 below, T has a 00 contiguous
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subsequence (of two adjacent zeroes) starting at an even index (0,2,4,...). Let y
and z denote the two white points corresponding to these two consecutive zeroes.
Partition the set S into the white triple {z,y, 2z} and two sets of odd sizes, n; and
ny (with ny +n2 = n — 3), consisting of all points preceding and following {y, 2} in
the clockwise order, respectively. It follows by induction that

n+1l ny+1 n+1 n+1
p(n) <1+ — + 2 = :[ -‘

2 2 2 2

It remains to establish

Claim 1 Let T = agay . ..ag41—1 be a {0,1}-sequence of even length, consisting of
k zeroes and | ones, where k —1 > 2. Then there is an even index 0 <i < k+1—2
such that a; = a;+1 = 0.

Proof. We prove the claim by induction on k + [, the length of the string. The
base case k + | = 2 is clear, because then we have T' = 00. For the induction step,
distinguish four cases, according to what the first two elements of T" are: 00,01, 10,
or 11. In the first case we are done. In the other three cases, the assertion is true,
because the inequality k' — ' > 2 holds for the sequence T" obtained from T by
deleting its first two elements. (Here k' and I’ denote the number of zeroes and ones
in T, respectively.) O

3. An Algorithmic Proof of Theorem 2

The functions p(-) and p(-,-) are monotone increasing: if i < j then p(i) < p(j),
and if ¢ < k and j <1 then p(i,j) < p(k,l). Thus, we have the lower bound in (1):

p(w,5) > plw, w) > h(2w) > [

Next we prove the upper bound in (1). For w = 1, the inequality holds, so assume
w > 2. Take an edge zy of the convex hull of the w white points, and let [ denote its
supporting line. Take {z,y} as a monochromatic (white) part of size 2, and another
(black, possibly empty) monochromatic part by selecting all black points lying in
the open half-plane bounded by [, which contains no white points. Continue this
procedure in the other open half-plane bounded by [ as long as it contains at least
two white points. If there is one (resp., no) white point left, then the remaining
points can be partitioned into at most three (resp., one) monochromatic parts,
whose convex hulls are pairwise disjoint. It is easy to verify that the number of
parts in the resulting partition does not exceed 2 [2] + 1. It is also true that the
white parts of this partition form a perfect matching (of the white points) if w is
even, and an almost perfect one (with one isolated point) if w is odd.

At the end of this section we present an O(nlogn) time algorithm which com-
putes such a partition.
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Further, we verify the three cases highlighted in the theorem. For even w, the
lower and upper bounds in (1) are both equal to w + 1. The same holds in case
(i), i-e., when w < b <w+1: p(w,b) < p(2w+1) = w + 1. For odd w, the gap
between the lower and upper bounds is at most one.

It remains to discuss case (ii), when w is odd and b > 2w, for which we get a tight
bound. By the monotonicity of p(w, b), it is enough to show that p(w,2w) > w + 2.
Let Y be a regular w-gon. Let X and Z denote the inner and outer polygons
obtained from Y by slightly shrinking it and blowing it up, respectively, around its
center O. To bring X UY U Z into general position, slightly rotate ¥ around its
center in the clockwise direction so that, if z € X and z € Z are the two vertices
corresponding to y € Y, then the points O,x,y,z are almost collinear. Place a
white point at each vertex of Y, and a black point at each vertex of X and Z (see
Fig. 1).

Fig. 1. A point set proving the lower bound in Theorem 2

We say that a triangle is white (resp. black), if all of its vertices are white
(resp. black). Notice that the white vertices must be partitioned into at least
(w + 1)/2 parts. Otherwise, there would be a white part of size (at least) 3, which
is impossible, because every white triangle A contains a black point of X in its
interior. (If the center O is inside A, there are three black points of X inside A. If
O is outside A, the black point of X corresponding to the “middle” point of A lies
in A.) Similarly, the vertices of Z require at least (w + 1)/2 parts.

Assume, for contradiction, that S can be partitioned into at most w + 1 parts.
Then the monochromatic parts restricted to the vertices of Z form an almost perfect
non-crossing matching using straight-line segments, with exactly one unmatched
point, and the same holds for Y. Let zg € Z be the unmatched point of Z. We
restrict our attention to the matching M formed by the vertices of Z. These seg-
ments partition the circumscribing circle C of Z into (w+ 1)/2 convex regions. The
boundary B(R) of a region R, is formed by some segments in M and arcs of C. Let
Zo denote the region containing the center 0. Each point of X must be assigned
to a black part determined by M. We distinguish two cases.
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Case 1: zy ¢ Zp (see Fig. 1, left). Pick any segment s € M N B(Z), and
let z denote its first vertex in the clockwise order. Let x denote the vertex of X
belonging to the ray Oz. It is easy to see that z cannot be assigned to any of the
black parts determined by M, since the black triangle obtained in this way would
contain a white point in its interior, contradiction.

Case 2: 29 € Zy (see Fig. 1, right). Let xo be the vertex of X belonging to the
ray Ozg. The point zy can only be assigned to the part containing zy. By adding
the segment xzy to M, we obtain a non-crossing matching M ". Let z be the first
vertex on B(Zy) following zp in the clockwise order. Let z denote the vertex of
X belonging to the ray Oz. Similarly to Case 1, it is easy to see that z cannot
be assigned to any of the black parts determined by M ', since any black triangle
obtained in this way would contain a white point, contradiction.

Thus, any partition of S requires at least w + 2 parts, which completes the proof
of the theorem.

Algorithm outline. We follow the general scheme described in the proof of the
upper bound in Theorem 2, but allow some variations. Let W and B denote the
set of white and black points of .S, respectively.

1. This step ignores the black points. First, compute the convex layer decomposition
of W. Based on this decomposition, find a perfect (or almost perfect) non-crossing
matching M, using straight-line segments of W. At the same time, construct a
planar subdivision D of the plane into at most [4]+ 1 convex regions by extending
the segments of M along their supporting lines. (If w is odd, draw an arbitrary line
through the point which is left unmatched by M, and consider this point a part of
M) See Claim 2 below for a more precise description of the partitioning procedure
using the extension of segments.

2. Here the black points come into play. Preprocess D for point location and
perform point location in D for each black point.

3. Output the partition consisting of the pairs of points in M (the unmatched point
as a part, if w is odd) for the white points, and the groups of points in the same
region for the black points.

The following statement is an easy consequence of Euler’s polyhedral formula
(see also [13], page 259).

Claim 2 Let S = {s1, 82,.-.,5m} be a family of m pairwise disjoint segments in
the plane, whose endpoints are in general position. In the given order, extend each
segment in both directions until it hits another segment or the extension of a seg-
ment, or to infinity. After completing this process, the plane will be partitioned into
m + 1 convex regions.

Algorithm details and analysis. The algorithm outputs at most 2[¥] + 1
monochromatic parts, [¥] of which are white and at most [%] + 1 are black. The
decomposition into convex layers takes O(nlogn) time [3]. The matching M is
constructed starting with the outer layer and continues with the next layer, etc. If,
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for example, the size of the outer layer is even, every other segment in the layer
is included in M. If the size of the outer layer is odd, we proceed in the same
way, but at the end we compute the tangent from the last unmatched point to
the convex polygon of the next layer, include this segment in M, and proceed to
the next layer. The algorithm maintains at each step a current convex (possibly
unbounded) polygonal region P containing all unmatched points. It also maintains
the current planar subdivision D computed up to this step. The next segment s
to be included in M lies inside P. Let s be oriented so that all unmatched (white)
points are to the right of it. After extending s, P will fall into two convex polygonal
regions, P’ and P", containing all the remaining unmatched points, and none of
the points, respectively. At this point, P’ becomes the new P and P is included in
the polygonal subdivision D, which is thus refined. An example of step 1 is shown
in Fig. 2, with the segments numbered in their order of inclusion in M.

Fig. 2. Ilustration of Step 1 of the algorithm

For each convex layer, we compute a balanced hierarchical representation (see
Lemma 1 below). Since a tangent to a convex polygon of size at most n from an
exterior point can be computed in O(logn) time, having such a representation, the
time to compute all tangents is O(nlogn). By dynamically maintaining the same
(balanced hierarchical) representation for the current polygonal region P, we can
compute the (at most two) intersection points between P and the supporting line of
s in O(logn) time. The reader is referred to [11], pages 84-88 for this representation
and the for two statements below.

Lemma 1 ([11], page 85) A balanced hierarchical representation of a convex poly-
gon on n points can be computed in O(n) time.

Lemma 2 ([11], page 87) Given a balanced hierarchical representation of a convex
polygon on n points and a line I, PN 1 can be computed in O(logn) time.

One can obtain a balanced hierarchical representation of a convex polygon in
a natural way, by storing the sequence of edges in the leaves of a balanced tree.
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Furthermore, selecting (2-3)-trees for this representation, allows us to get the bal-
anced hierarchical representation of P’ from that of P in O(logn) time by using the
SPLIT operation on concatenable queues (see [2], pages 155-157). To get P’ from
P calls for at most two INSERT and at most two SPLIT operations, each taking
O(logn) time. The update of D with P takes O(|P"|) time. Since Y |P"| over the
execution of the algorithm is O(n), the total time required by step 1 is O(nlogn).
We recall the following well known fact (e.g. see [12], page 77).
Lemma 3 For any planar graph with n vertices, one can build a point location data
structure of O(n) size in O(nlogn) time, guaranteeing O(logn) query time.
The point location is performed for b < m points, so the total time of step 2
is also O(nlogn). The complexity of the last step is linear, thus the total time
complexity of the algorithm is O(nlogn). The space requirement is O(n).

Another approach. The next algorithm closely mimics the proof of the upper
bound in Theorem 2. Using the method of [10] (or of [3]) for convex hull maintenance
under deletions of points, a sequence of n deletions performed on an n-point set takes
O(nlogn) time. Specifically, maintain the convex hull of the white points and that
of the black points. Take an edge e of the white hull. Repeatedly, query the black
hull to find a black point in the halfplane determined by e containing none of the
white points. Such points (if any) are deleted one by one, until no other is found,
and their collection is output as a black part. Then the two endpoints of e are
deleted and this pair is output as a white part. The above step is repeated until
the white points are exhausted and the partition is complete. The O(n) queries and
deletions take O(nlogn) time.

4. Coloring with More Colors — Proof of Theorem 3

We prove the lower bound by induction on n. Clearly, we have p(1) > 1,
pe(2) > 2,..., pr(k) > k. Assume the inequality holds for all values smaller than
n. Consider a set S of n points placed on a circle, colored with & colors, 1,2,...,k,
in a periodic fashion:

1,2,...,k1,2, ... k,...,1,2,. .. ",

where n = mk+r, 0 <r < k—1. We call such a configuration periodic. Let hy(n) :=
pi(9), the smallest number of monochromatic parts a periodic configuration S can
be partitioned into so that their convex hulls are pairwise disjoint. Clearly, we have
pr(n) > hg(n). Fix such a partition.

Case 1: r = 0. If every monochromatic part of the partition is a singleton, then
we are done. Consider a monochromatic part P of size [ > 2, and assume without
loss of generality that the color of P is k. S — P splits into smaller periodic subsets
of sizes ny,na,...,n;, with n; = —1 (mod k) for every i, such that

1=l i=l
Zni+l:n, or Z(ni+1) =n. (2)
=1 i=1
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Hence, by induction,

=l
>1+thn, >1+Z[ "z+1w_1+z(k—1)nzk+(k—1)
i=1

i=l
_ (k=D(mi+1) _ (k=Dn _ (k=Ontk _[(k=Dn+1
=1+ - =l+——"= p —[ p 1

i=1
Case 2: r = 1. Discard 1 point of color 1 from the last (incomplete) group,

and get a periodic configuration with n — 1 points, as in the previous case. Then,
by induction,

hi(n) > hy(n —1) > [(k - 1)(72— 1)+ 1}

(k—1)n—-1)+k] [(k-1n+1
e

Case 3: r > 2. We distinguish two subcases:

Subcase 3.a: There exists a monochromatic part P of size [ > 2 of color 1.
The set S — P splits into smaller periodic subsets of sizes ni,ns,...,n; satisfying
(2), where n; = —1 (mod k) forall1 <¢<[l—-1, and n; =r—1 (mod k).
Then, using the induction hypothesis, we obtain

>1+thnz >1+Z[ ”“Hw

i=l—1
-1+ Y (k — 1)n,-k+ (k=1) (k= l)nlk+ (r—1)

i=l
B (k=1(mni+1) r—k (k=L)n+r [(k=1)n+r
=1+ % A [ % W

i=1

[(k—l)n+r—(k—1)" _ [(k—l)n+1"‘

k k
Subcase 3.b: There is no monochromatic part P of size [ > 2 of color 1.
n—r n—r,._n-—r (k=2)(n—2) +1
> _ — >
he(n) > + hg—1(n A ) > A +’V P11
B (k=2)((k=1)m+r)+1] _ (k=2)r+1
—m+[ 1 =(k-1m+ P .
The lower bound we want to prove can be written as
k-1 1 k-1 1
% =(k—1m+ [%-‘ _
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An easy calculation shows that

(k—2)r+17 1—r] I—r] [(k-1Dr4+1
[ r—1 | " E=| T T R | T 2 '
The value of the above expression is 1 for » = 0, and r for » > 1 (only the latter

case is of interest in this subcase). This concludes the proof of the lower bound.
Next, we establish the upper bound in Theorem 3.

Proposition 1 pi(n) < n — gg(n).

Proof. A set of n points contains a non-crossing matching of gi(n) pairs. Thus,
using parts of size 2 for the points in the matching and singletons for the remaining
ones, we obtain a partition, in which the number of parts is

gr(n) + (n — 2gx(n)) = n — gr(n).

Proposition 2 [7] For k > 3, we have g, (6k +1) = 6.

It follows immediately from Propositions 1 and 2 that

pr(n) < — gi(n) = (1 - %) n+0(1) = (1 - ﬁm) n+0(1),

as required.

In the end, we outline an algorithm. Its main part is the computation of the
matching M, which appears in [7]. Let k > 3 be a fixed integer.

Algorithm. The n points are sorted according to their z-coordinate and divided
into consecutive groups of size 6k + 1. In each group, with the possible exception
of the last one, one can match at least 12 elements. This can be done by matching
12 out of 19 points in the three largest color classes. The time to process a group
is O(k), so the total time is O(nlogn). The number of output parts is bounded as
claimed in the theorem.

5. Higher Dimensions — Proof of Theorem 4

The upper bound (i) can be shown by straightforward generalization of the proof
of Theorem 2: if w < b, n =w+b, |W| = w, one can iteratively remove a facet of
conv(W). The easy details are left to the reader.

To verify part (ii), we need a simple property of the d-dimensional moment curve

Mqy(1) = (T,T2,...,Td), TeR

For two points, = My(m) and y = My(m2), we say that = precedes y and write
z <y if 1 < 7. For simplicity, let u = [d/2] and v = |d/2].
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Lemma 4 (see [5], [6]) Let 1 < 2 < ... < ZTyp1 ond y1 < Y2 < ... < Yyy1 be
two sequences of distinct points on the d-dimensional moment curve, whose convex
hulls are denoted by X and Y, respectively.

Then X and Y cross each other if and only if the points x; and y; interleave,
i.e., every arc z;x;11 of Mq(T) contains exactly one y;.

Let S, be a sequence of n points on the d-dimensional moment curve, z; <
Ty < ... = Zn, which are colored white and black, alternately. Consider a partition
of S, into m monochromatic parts, labeled by integers between 1 and m, and
suppose that the convex hulls of these parts are pairwise disjoint. Replacing every
element of the sequence S, by the the label of the part containing it, we obtain a
sequence T of length n, whose elements are integers between 1 and m. Obviously,
no two consecutive elements of this sequence coincide, because adjacent points have
different colors, and thus belong to different parts in the partition. It follows from
the above lemma that T has no alternating subsequence of length (u+1)+(v+1) =
d+ 2. That is, T is an (m, d)-Davenport-Schinzel sequence of length n. Therefore,
we have n < \g(m), or, equivalently, m > pug4(n), as required.
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