1  FINITE POINT CONFIGURATIONS

Janos Pach

INTRODUCTION

The study of combinatorial properties of finite point configurations is a vast area of
research in geometry, whose origins go back at least to the ancient Greeks. Since it
includes virtually all problems starting with “consider a set of n points in space,”
space limitations impose the necessity of making choices. As a result, we will
restrict our attention to Euclidean spaces and will discuss problems that we find
particularly important. The chapter is partitioned into incidence problems (Section
1.1), metric problems (Section 1.2), and coloring problems (Section 1.3).

1.1 INCIDENCE PROBLEMS

In this section we will be concerned mainly with the structure of incidences between
a finite point configuration P and a set of finitely many lines (or, more generally, k-
dimensional flats, spheres, etc.). Sometimes this set consists of all lines connecting
the elements of P. The prototype of such a question was raised by Sylvester more
than one hundred years ago: Is it true that for any configuration of finitely many
points in the plane, not all on a line, there is a line passing through exactly two
points? The affirmative answer to this question was first given by Gallai. General-
izations for circles and conic sections in place of lines were established by Motzkin
and Wilson-Wiseman, respectively.

GLOSSARY

Incidence: A point of configuration P lies on an element of a given collection of
lines (k-flats, spheres, etc.).

Simple crossing: A point incident with exactly two elements of a given collection
of lines.

Ordinary line: A line passing through exactly two elements of a given point
configuration.

Ordinary hyperplane: A (d—1)-dimensional flat passing through exactly d
elements of a point configuration in Euclidean d-space.

Motzkin hyperplane: A hyperplane whose intersection with a given d-dimen-
sional point configuration lies—with the exception of exactly one point—in a
(d—2)-dimensional flat.

Regular family of curves: A family I' of curves in the zy-plane defined in
terms of D real parameters satisfying the following properties. There is an
integer s such that (a) the dependence of the curves on z,y, and the parameters
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is algebraic of degree at most s; (b) no two distinct curves of I' intersect in more
than s points; (c¢) for any D points of the plane, there are at most s curves in T’
passing through all of them.

Degrees of freedom: The smallest number D of real parameters defining a
regular family of curves.

Spanning tree: A tree whose vertex set is a given set of points and whose edges
are line segments.

Spanning path: A spanning tree that is a polygonal path.
Convex position: P forms the vertex set of a convex polygon or polytope.

k-set: A k-element subset of P that can be obtained by intersecting P with an
open halfspace.

Halving plane: A hyperplane with ||P|/2] points of P on each side.

SYLVESTER-TYPE RESULTS

FIGURE 1.1.1 \ /

Eztremal ezamples for the (dual) Csima-Sawyer
theorem: \/
(a) 13 lines (including the line at infinity) /\

determining only 6 simple points;
(b) 7 lines determining only 3 simple points. / \

1. Gallai theorem (dual version): Any set of lines in the plane, not all of which
pass through the same point, determines a simple crossing.

2. Motzkin-Hansen theorem: For any finite set of points in Euclidean d-space,
not all of which lie on a hyperplane, there exists a Motzkin hyperplane. We
obtain as a corollary that n points in d-space, not all of which lie on a hyper-
plane, determine at least n distinct hyperplanes. (A hyperplane is determined
by a point set P if its intersection with P is not contained in a (d—2)-flat.)
Putting the points on two skew lines in 3-space shows that the existence of
an ordinary hyperplane cannot be guaranteed for d > 2.

If n > 8 is sufficiently large, then any set of n noncocircular points in the
plane determines at least (";1) distinct circles, and this bound is best possible
[ELl67]. The number of ordinary circles determined by n noncocircular points
is known to be at least 11n(n — 1)/247.

3. Csima-Sawyer theorem: Any set of n noncollinear points in the plane deter-
mines at least 6n/13 ordinary lines (n > 7). This bound is sharp for n = 13
and false for n = 7 (see Figure 1.1.1). In 3-space, any set of n noncoplanar
points determines at least 2n/5 Motzkin hyperplanes.

@ (b)

4. Orchard problem: What is the maximum number of collinear triples deter-
mined by n points in the plane, no four on a line? There are several construc-
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FIGURE 1.1.2

12 points and 19 lines, each passing through exactly 3 points.

5.

FIGURE 1.1.3

tions showing that this number is at least n? /6—O(n), which is asymptotically
best possible. (See Figure 1.1.2.)

Dirac’s problem: Is it true that—with six exceptions listed in [Grii72]—any
set of n points in the plane, not all on a line, has an element incident to at
least n/2 connecting lines? If true, this result is best possible, as is shown by
the example of n points distributed as evenly as possible on two intersecting
lines. It is known that there is a positive constant ¢ such that one can find a
point incident to at least en connecting lines. A useful equivalent formulation
of this statement is that any set of n points in the plane, no more than n — k
of which are on the same line, determines at least ¢'kn distinct connecting
lines, for a suitable constant ¢’ > 0. Note that according to the d = 2 special
case of the Motzkin-Hansen theorem, due to Erdés (see No. 2 above), for
k = 1 the number of distinct connecting lines is at least n. For k = 2, the
corresponding bound is 2n — 4, (n > 10).

Ungar’s theorem: n noncollinear points in the plane always determine at
least 2|n/2| lines of different slopes (see Figure 1.1.3); this proves Scott’s
conjecture. Furthermore, any set of n points in the plane, not all on a line,
permits a spanning tree, all of whose n—1 edges have different slopes [Jam87].

7 points determining 6 distinct slopes.

UPPER BOUNDS ON THE NUMBER OF INCIDENCES

Given a set P of n points and a family T' of m curves or surfaces, the number of
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incidences between them can be obtained by summing over all p € P the number
of elements of T passing through p. If the elements of I' are taken from a regular
family of curves with D degrees of freedom, the maximum number of incidences
between P and T is O(nP/(P~Vm,(20=2)/2D=1) 4 p 4 ). In the most important
applications, T is a family of straight lines or unit circles in the plane (D = 2), or
it consists of circles of arbitrary radii (D = 3). The best upper bounds known for
the number of incidences are summarized in Table 1.1.1. It follows from the first
line of the table that for any set P of n points in the plane, the number of distinct
straight lines containing at least k elements of P is O(n?/k® +n/k), and this bound
cannot be improved (Szemerédi-Trotter). In the sixth line of the table, 8(n,m) is
an extremely slowly growing function, which is certainly o(n¢m?¢) for every € > 0.
A collection of spheres in 3-space is said to be in general position here if no three
of them pass through the same circle.

TABLE 1.1.1 Maximum number of incidences between n points of P and
m elements of . [CEGT90]

POINT SET P | FAMILY T BOUND TIGHT
Planar lines O(n?*3m?/3 +n+m) yes
Planar pseudolines O(n?/3m?2/3 £ n 4+ m) yes
Planar unit circles O(n?*3m?/3 £ n+m) ?
Planar any circles O(n3/5m*/5 4 n + m) ?
Planar pseudocircles O(n3/3mA/3 £ n 4+ m) ?
3-dimensional | spheres O(n*"m®/ 7 B(n, m) + n2) ?
3-dimensional | spheres in gen. position O(n3/*m3/% £ n 4+ m) ?

MIXED PROBLEMS

Many problems about finite point configurations involve some notions that cannot
be defined in terms of incidences: convex position, midpoint of a segment, etc.
Below we list a few questions of this type. They are discussed in this part of the
chapter, and not in Section 1.2 which deals with metric questions, because we can
disregard most aspects of the Euclidean metrics in their formulation. For example,
convex position can be defined by requiring that some sets should lie on one side
of certain hyperplanes. This is essentially equivalent to introducing an order along
each straight line.

1. Erdés-Klein-Szekeres problem: What is the maximum number of points that
can be chosen in the plane so that no three are on a line and no k are in
convex position (k > 3)? Denoting this number by c(k), it is known that

2n —4
k=2 < < )
2 _c(k)_(n—Z)

Let e(k) denote the maximum size of a planar point set P that has no three
elements on a line and no k elements that form the vertex set of an “empty”
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convex polygon, i.e., a convex k-gon whose interior is disjoint from P. We
have e(3) = 2, e(4) = 4, e(5) = 9, and Horton showed that e(k) is infinite for
all £ > 7. Tt is an outstanding open problem to decide whether e(6) is finite.

2. The number of empty k-gons: Let Hi(n) (n > k > d+1) denote the minimum
number of k-tuples that induce an empty convex polytope of k vertices in a
set of n points in d-space, no d + 1 of which lie on a hyperplane. Clearly,
Hi(n) =n—1and Hj(n) =0 for k> 2. For k =d + 1, we have

1 . d d 2
7S Jim Hi(n)/n® < @1

[Val95]. For d = 2, the best estimates known for H? = lim,,_,oc H?(n)/n? are
1< H2<168, 1/2<Hj <242, 0 < H? < 1.46,
0<H:<1/3, HH=Hi=...=0.

3. The number of k-sets: Let NZ(n) denote the maximum number of k-sets in
a set of n points in d-space, no d + 1 of which lie on the same hyperplane.
In other words, Nf(n) is the maximum number of different ways in which k&
points of an n-element set can be separated from the others by a hyperplane.
It is known that

Q(nlogk) < NZ(n) <O (m/E/ log™ k) ,

where log* k denotes the iterated logarithm of k. For the number of halving
planes, NL3n/2J (n) = O(n®/?), and

Q(n?logn) < an/zj (n) = o(n?).

4. The number of midpoints: Let M (n) denote the minimum number of different
midpoints of the (;L) line segments determined by n points in convex position
in the plane. One might guess that M(n) > (1 — o(1))(}), but it was shown
in [EFF91] that

(721> 3 Ln(n+ 1)(; — e—1/2)J < Mn) < (Z) 3 Ln2 - ;g+ 12J-

5. Midpoint-free subsets: As a partial answer to a question proposed in [MP],
it was proved by V. Bélint et al. that if m(n) denotes the largest number m
such that every set of n points in the plane has a midpoint-free subset of size

m, then
|_—1 +V8n+1
2

] <m(n) <o(n)

OPEN PROBLEMS

Here we give six problems from the multitude of interesting questions that remain
open.
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1. Motzkin-Dirac conjecture: Any set of n noncollinear points in the plane de-
termines at least n/2 ordinary lines (n > 13).

2. Generalized orchard problem (Erdés): What is the maximum number of
collinear k-tuples determined by n points in the plane, no k + 1 of which
are on a line (k > 3)? In particular, show that it is o(n?) for k = 4. The best
lower bound known is Q(n!+1/(k=2)),

3. Maximum independent subset problem (Erdés): Determine the largest num-
ber a(n) such that any set of n points in the plane, no four on a line, has
an a(n)-element subset with no collinear triples. Fiiredi has shown that

Qv/nlogn) < a(n) < o(n).

4. Slope problem (Jamison): Is it true that every set of n points in the plane, not
all on a line, permits a spanning path, all of whose n — 1 edges have different
slopes?

5. Empty triangle problem (Bérdny): Is it true that every set of n points in the
plane, no three on a line, determines at least t(n) empty triangles that share
a side, where t(n) is a suitable function tending to infinity?

6. Balanced partition problem (Kupitz): Does there exist an integer k with the
property that for every planar point set P, there is a connecting line such
that the difference between the number of elements of P on its left side and
right side does not exceed k7 Several examples show that this assertion is not
true with k = 1.

1.2

METRIC PROBLEMS

The systematic study of the distribution of the (}) distances determined by n points
was initiated by Erdds in 1946. Given a point configuration P = {p1,p2,...,Pn},
let g(P) denote the number of distinct distances determined by P, and let f(P)
denote the number of times that the unit distance occurs between two elements of
P. That is, f(P) is the number of pairs p;p; (i<j) such that |p;—p;| = 1. What
is the minimum of g(P) and what is the maximum of f(P) over all n-element sub-
sets of Euclidean d-space? These questions have raised deep number-theoretic and
combinatorial problems, and have contributed richly to many recent developments
in these fields.

GLOSSARY

Unit distance graph: A graph whose vertex set is a given point configuration
P, in which two points are connected by an edge if and only if their distance is
one.

Diameter: The maximum distance between two points of P.

General position in the plane: No three points of P are on a line, and no
four on a circle.

Separated set: The distance between any two elements is at least one.
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Nearest neighbor of p € P: A point ¢ € P, whose distance from p is minimum.
Farthest neighbor of p € P: A point ¢ € P, whose distance from p is maximum.
Homothetic sets: Similar sets in parallel position.

REPEATED DISTANCES

Extremal graph theory has played an important role in this area. For example, it is
easy to see that the unit distance graph assigned to an n-element planar point set P
cannot contain K3 3, a complete bipartite graph with 2 and 3 vertices in its classes.
Thus, by a well-known graph-theoretic result, f(P), the number of edges in this
graph, is at most O(n3/2). This bound can be improved to O(n*/3) by using more
sophisticated combinatorial techniques (apply line 3 of Table 1.1.1 with m = n);
but we are still far from knowing what the best upper bound is.

In Table 1.2.1, we summarize the best currently known estimates on the max-
imum number of times the unit distance can occur among n points in the plane,
under various restrictions on their position. In the first line of the table—and
throughout this chapter—c denotes (unrelated) positive constants. The second and
third lines show how many times the minimum distance and the maximum dis-
tance, resp., can occur among n arbitrary points in the plane. Table 1.2.2 contains
some analogous results in higher dimensions. In the first line, §(n) is an extremely
slowly growing function, closely related to the functional inverse of the Ackermann
function.

TABLE 1.2.1 Estimates for the maximum number of unit distances determined by
an n-element planar point set P.

POINT SET P LOWER BOUND UPPER BOUND | SOURCE

Arbitrary nlte/loglogn 0(n*/3) Erdés, Spencer et al.
Separated [3n — v12n — 3| [3n — v/12n — 3| | Reutter, Harborth

Of diameter 1 n n Hopf-Pannwitz

In convex position 2n—7 O(nlogn) Edelsbrunner-Hajnal, Fiiredi
No 3 collinear Q(nlogn) O(n*/3) Kérteszi

Separated, no 3 coll. | (2+5/16 —o(1))n (2+3/7)n [T6t95]

<KD
4 4 )
TR
K KK KD
4 4P <X
KO KX >
<K KK DX
SRR
X KKK >
FIGURE 1.2.1 KKK D
A separated point set with |3n — (12n — 3)1/2J unit distances (n = 69). ‘Eg >

All such sets have been characterized by Kupitz.
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TABLE 1.2.2 Estimates for the maximum number of unit distances determined by an

n-element point set P in d-space.

POINT SET P LOWER BOUND UPPER BOUND SOURCE

d = 3, arbitrary Q(n?/3 loglogn) 0(n3/24(n)) Clarkson et al.

d = 3, separated 6n — O(n2/3) 6n — Q(n?/3) Newton

d = 3, diameter 1 2n — 2 2n —2 Griinbaum, Heppes

d = 3, on sphere Q(n?/3) o(n*/3) Erdés-Hickerson-Pach
(rad. 1/v/2)

d = 3, on sphere Q(nlog* n) o(n*/3) Erdés-Hickerson-Pach
(rad. r # 1/V/2)

2 2
d>3even, arb. | % (1—[zhs7) +n—0(a) EX (1-zhay) +n—d) | Erdés
d > 3 odd, arb. % (1) +UNY?) | & (117 ) +O(n#/3) | Erdés-Pach

AT N

NXRIAT N
AR
R AN

RPN

A

23

FIGURE 1.2.2

n  points, among which the second-
smallest distance occurs (% + o(1))n
times.

The second line of Table 1.2.2 can be extended by showing that the smallest
distance cannot occur more than 3n—2k+4 times between points of an n-element set
in the plane whose convex hull has k vertices. The maximum number of occurrences
of the second-smallest and second-largest distance is (24/7 4+ o(1))n and 3n/2 (if n
is even), respectively (Brass, Vesztergombi).

Given any point configuration P, let ®(P) denote the sum of the numbers
of farthest neighbors for every element p € P. Table 1.2.3 contains tight upper
bounds on ®(P) in the plane and in 3-space, and asymptotically tight ones for
higher dimensions [ES89], [Csi95], [EP90].
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TABLE 1.2.3 Upper bounds on ®(P), the total number of farthest
neighbors of all points of an n-element set P.

POINT SET P UPPER BOUND
Planar, n is even 3n—3
Planar, n is odd 3n—4
Planar, in convex position 2n
3-dimensional, n =0 (mod 2) n2/4+3n/2+3

3-dimensional, n =1 (mod 4) n?/443n/2 +9/4
3-dimensional, n =3 (mod 4) n2/4+3n/2+ 13/4
d-dimensional (d > 3) n2(1—1/|d/2] + o(1))

DISTINCT DISTANCES

It is obvious that if all distances between pairs of points of a d-dimensional set P
are the same, then |P| < d + 1. If P determines at most g distinct distances, we
have that |P| < (*19); see [BBS83]. This implies that if d is fixed and n tends to
infinity, then the minimum number of distinct distances determined by n points in
d-space is at least Q(n'/?). Denoting this minimum by g4(n), for d > 3 we have
the following results:

Qnt/ (@D j200% (M) < g,(n) < O(n??),

where a(n) is the (extremely slowly growing) functional inverse of Ackermann’s
function. In Table 1.2.4, we list some lower and upper bounds on the minimum
number of distinct distances determined by an n-element point set P, under various
assumptions on its structure.

TABLE 1.2.4 Estimates for the minimum number of distinct distances
determined by an n-element point set P in the plane.

POINT SET P LOWER BOUND | UPPER BOUND | SOURCE

Arbitrary Q(n*/3) O(n/+/logn) Székely [Szé95]

In convex position [n/2] n/2] Altman

No 3 collinear [(n—1)/3] [n/2] Szemerédi

In general position Q(n) O(nlte/V1ogn) | Frdés, Fiiredi et al.

RELATED RESULTS

1. Integer distances: There are arbitrarily large, noncollinear finite point sets in
the plane such that all distances determined by them are integers, but there
exists no infinite set with this property.
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. Generic subsets: Any set of n points in the plane contains Q(n'/4) points

such that all distances between them are distinct. This bound could perhaps
be improved to about n'/?; see [LT95).

Borsuk’s problem: It was conjectured that every (finite) d-dimensional point
set P can be partitioned into d + 1 parts of smaller diameter. It follows from
the results quoted in the third lines of Tables 1.2.1 and 1.2.2 that this is
true for d = 2 and 3. Surprisingly, Kahn and Kalai proved that there exist
sets P that cannot be partitioned into fewer than (1.2)‘/E parts of smaller
diameter. In particular, the conjecture is false for d = 946. On the other
hand, it is known that for large d, every d-dimensional set can be partitioned
into (1/3/2 + 0(1))? parts of smaller diameter [Sch88].

Nearly equal distances: Two numbers are said to be nearly equal if their
difference is at most one. If n is sufficiently large, then the maximum number
of times that nearly the same distance occurs among n separated points in
the plane is [n?/4]. The maximum number of pairs in a separated set of n
points in the plane, whose distance is nearly equal to any one of & arbitrarily

chosen numbers, is "72(1 — 741 T 0(1)), as n tends to infinity [EMP93].

. Repeated angles: In an mn-element planar point set, the maximum number

of noncollinear triples that determine the same angle is O(n?logn), and this
bound is asymptotically tight (Pach-Sharir). The corresponding maximum
in 3-space is at most O(n®/3), but in 4-space the angle /2 can occur Q(n?)
times (Croft, Purdy).

Repeated triangles: Let t4(n) denote the maximum number of triples in an n-
element point set in d-space that induce a unit area triangle. It is known that
Q(n?loglogn) < ta(n) < O(n7/3), ts(n) = o(n?), and tg(n) = O(n®) (Pach-
Sharir, Purdy). In the plane, the maximum number of triples that determine
a triangle of unit perimeter, or an isosceles triangle, is also O(n"/3).

Similar triangles: There exists a positive constant ¢ such that for any triangle
T and any n > 3, there is an n-element point set in the plane with at least
en? triples that induce triangles similar to 7. For most quadrilaterals @, the
maximum number of 4-tuples of an n-element set that induce quadrilaterals
similar to @ is o(n?). The maximum number of pairwise homothetic triples
in a set of n points in the plane is O(n3/2), and this bound is asymptotically
tight [EE94].

CONJECTURES OF ERDOS

1.

2.

3.

The number of times the unit distance can occur among n points in the plane
does not exceed nlte/loglogn,

Any set of n points in the plane determines at least Q(n/+/logn) distinct
distances.

Any set of n points in convex position in the plane has a point from which
there are at least |n/2| distinct distances.
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4. There is an integer k > 4 such that any finite set in convex position in the
plane has a point from which there are no k points at the same distance.

5. Any set of n points in the plane, not all on a line, contains at least n — 2
triples that determine distinct angles (Corradi, Erdds, Hajnal).

6. The diameter of any set of n points in the plane with the property that the
set of all distances determined by them is separated (on the line) is at least
Q(n). Perhaps it is at least n — 1, with equality when the points are collinear.

1.3 COLORING PROBLEMS

If we partition a space into a small number of parts (i.e., we color its points with a
small number of colors), at least one of these parts must contain certain “unavoid-
able” point configurations. In the simplest case, the configuration consists of a pair
of points at a given distance. The prototype of such a question is the Hadwiger-
Nelson problem: What is the minimum number of colors needed for coloring the
plane so that no two points at unit distance receive the same color? The answer is
known to be between 4 and 7.

FIGURE 1.3.1
The chromatic number of the plane is . -
(i) at most 7 and (i) at least 4. 0 (ii)

GLOSSARY

Chromatic number of a graph: The minimum number of colors, x(G), need-
ed to color all the vertices of G so that no two vertices of the same color are
adjacent.

List-chromatic number of a graph: The minimum number £k such that for
any assignment of a list of k colors to every vertex of the graph, for each vertex
it is possible to choose a single color from its list so that no two vertices adjacent
to each other receive the same color.
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Chromatic number of a metric space: The chromatic number of the unit
distance graph of the space, i.e., the minimum number of colors needed to color
all points of the space so that no two points of the same color are at unit distance.

Polychromatic number of metric space: The minimum number of colors,
X, needed to color all points of the space so that for each color class C;, there
is a distance d; such that no two points of C; are at distance d;. A sequence of
“forbidden” distances, (di,...,dy), is called a type of the coloring. (The same
coloring may have several types.)

Girth of a graph: The length of the shortest cycle in the graph.

A point configuration P is k-Ramsey in d-space if, for any coloring of the points
of d-space with k colors, at least one of the color classes contains a congruent
copy of P.

A point configuration P is Ramsey if, for every k, there exists d(k) such that P
is k-Ramsey in d(k)-space.

Brick: The vertex set of a right parallepiped.

FORBIDDEN DISTANCES

Table 1.3.1 contains the best bounds we know for the chromatic numbers of various
spaces. All lower bounds can be established by showing that the corresponding unit
distance graphs have some finite subgraphs of large chromatic number. S¢~1(r)
denotes the sphere of radius r in d-space, where the distance between two points is
the length of the chord connecting them.

TABLE 1.3.1 Estimates for the chromatic numbers of metric spaces.

SPACE LOWER BOUND | UPPER BOUND | SOURCE

Line 2 2

Plane 4 7 Nelson, Isbell

Rational points of plane 2 2 Woodall

3-space 5 21 Raiskif

Rational points of 3-space 2 2 Benda, Perles

S2(r), 5 <r < V3VB 3 4 Simmons

S2(r), —"3;‘/5 <r< ﬁ 3 5 Straus

S2(r),r > % 4 7 Simmons

52 (%) 4 4 Simmons

Rational points of 4-space 4 4 Benda, Perles

Rational points of 5-space 6 ? Chilakamarri

d-space (1 +0(1))(1.2)¢ (3 +0(1))¢ Frankl-Wilson,
Larman-Rogers

Se=1(r),r > % d ? Lovész

Next we list several problems and results strongly related to the Hadwiger-
Nelson problem (quoted in the introduction to this section).
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1. Polychromatic number: Stechkin and Woodall showed that the polychromatic
number of the plane is between 4 and 6. It is known that for any r € [v/2 —
1,1/+/5], there is a coloring of type (1,1,1,1,1,7) [Soi94]. However, the list-
chromatic number of the unit distance graph of the plane, which is at least
as large as its polychromatic number, is infinite.

2. Dense sets realizing no unit distance: The lower (resp. upper) density of
an unbounded set in the plane is the liminf (resp. limsup) of the ratio of
the Lebesgue measure of its intersection with a disk of radius r around the
origin to r27, as r — co. If these two numbers coincide, their common value
is called the density of the set. Let §? denote the maximum density of a
planar set, no pair of points of which is at unit distance. Croft showed that
0.2293 < 6% < 0.2857.

3. The graph of large distances: Let G;(P) denote the graph whose vertex set
is a finite point set P, with two vertices connected by an edge if and only if
their distance is one of the i largest distances determined by P. In the plane,
x(G1(P)) < 3 for every P; see Borsuk’s problem in the preceding section. It
is also known that for any finite planar set, G;(P) has a vertex with fewer
than 3¢ neighbors (Erdds-Lovasz-Vesztergombi). Thus, G;(P) has fewer than
3in edges, and its chromatic number is at most 3i. However, if n > ci2 for a
suitable constant ¢ > 0, we have x(G;(P)) < 7.

EUCLIDEAN RAMSEY THEORY

According to an old result of Gallai, for any finite d-dimensional point configuration
P and for any coloring of d-space with finitely many colors, at least one of the color
classes will contain a homothetic copy of P. The corresponding statement is false
if, instead of a homothet, we want to find a translate, or even a congruent copy,
of P. Nevertheless, for some special configurations, one can establish interesting
positive results, provided that we color a sufficiently high-dimensional space with a
sufficiently small number of colors. The Hadwiger-Nelson-type results discussed in
the preceding subsection can also be regarded as very special cases of this problem,
in which P consists of only two points. The field, known as “Euclidean Ramsey the-
ory”, was started by a series of papers by Erdés, Graham, Montgomery, Rothschild,
Spencer, and Straus.
For details, see Chapter 8 of this Handbook.

OPEN PROBLEMS

1. (Erdéds, Simmons) Is it true that the chromatic number of S?~1(r), the sphere
of radius r in d-space, is equal to d+ 1, for every r > 1/2? In particular, does
this hold for d = 3 and r = 1//3?

2. (Erdé8s) Does there exist an integer g such that the chromatic number of any
unit distance graph in the plane whose girth is at least g does not exceed 37
It is known that if such an integer exists, it must be at least 5 [Wor79].
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3. (Sachs) What is the minimum number of colors, x(d), sufficient to color any
system of nonoverlapping unit balls in d-space so that no two balls that are
tangent to each other receive the same color? Equivalently, what is the max-
imum chromatic number of a unit distance graph induced by a d-dimensional
separated point set? It is easy to see that x(2) = 4, and we also know that
5<x(3)<9.

4. (Ringel) Does there exist any finite upper bound on the number of colors
needed to color any system of (possibly overlapping) disks (of not necessarily
equal radii) in the plane so that no two disks that are tangent to each other
receive the same color, provided that no three disks touch one another at the
same point? If such a number exists, it must be at least 5.

5. (Graham) Is it true that any 3-element point set P that does not induce
an equilateral triangle is 2-Ramsey in the plane? This is known to be false
for equilateral triangles, and correct for right triangles (Shader). Is every
3-element point set P 3-Ramsey in 3-space? The answer is again in the
affirmative for right triangles (Béna and Téth).

1.4 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys.

[PA95]: A monograph devoted to combinatorial geometry.

[Pac93]: A collection of essays covering a large area of discrete and computational
geometry, mostly of some combinatorial flavor.

[HDK64]: A classical treatise of problems and exercises in combinatorial geometry,
complete with solutions.

[KWO91]: A collection of beautiful open questions in geometry and number theory,
together with some partial answers organized into challenging exercises.

[EP95]: A survey full of original problems raised by the “founding father” of com-
binatorial geometry.

[JT95]: A collection of more than two hundred unsolved problems about graph
colorings, with an extensive list of refererences to related results.

[Grii72]: A monograph containing many results and conjectures on configurations
and arrangements.

RELATED CHAPTERS

Chapter 4: Helly-type theorems and geometric transversals
Chapter 5: Pseudoline arrangements
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Chapter 8: Euclidean Ramsey theory

Chapter 10: Geometric discrepancy theory and uniform distribution
Chapter 11: Topological methods

Chapter 21: Arrangements
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