
The Beginnings of Geometric Graph Theory

János Pach∗

“...to ask the right question and

to ask it of the right person.”
(Richard Guy)

Abstract

Geometric graphs (topological graphs) are graphs drawn in the plane with possi-
bly crossing straight-line edges (resp., curvilinear edges). Starting with a problem of
Heinz Hopf and Erika Pannwitz from 1934 and a seminal paper of Paul Erdős from
1946, we give a biased survey of Turán-type questions in the theory of geometric
and topological graphs. What is the maximum number of edges that a geometric or
topological graph of n vertices can have if it contains no forbidden subconfiguration
of a certain type? We put special emphasis on open problems raised by Erdős or
directly motivated by his work.

1 Introduction

The term “geometric graph theory” is often used to refer to a large, amorphous body of
research related to graphs defined by geometric means. Here we take a narrower view:
by a geometric graph we mean a graph G drawn in the plane with possibly intersecting
straight-line edges. If the edges are allowed to be arbitrary continuous curves connecting
the vertices (points), then G is called a topological graph. Disregarding the particular
way the graph is drawn, we obtain the “abstract” underlying graph of G, which is usually
also denoted by G. We use the term geometric graph theory as a short form for “the
theory of geometric and topological graphs.”

In the past few decades, a number of exciting discoveries have been made in this
field. Some of them have found interesting applications in graph drawing, in combina-
torial and computational geometry, in additive number theory, and elsewhere. See, e.g.,
[AjCNS82], [Le83], [SoT03], [Sze97], [El97]. Many related contributions can be found in
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the proceedings of the annual symposia on graph drawing, published in Springer’s Lec-
ture Notes series in Computer Science (for instance, in [KrS12]) and in two collections of
papers [Pa04], [Pa13]. For surveys, see Chapter 14 in [PaA95], Chapter 10 in [GoO04],
and Chapters 1 and 3 in [Fe04].

Paul Erdős had a profound influence on the subject. On the occasion of his 100th
birthday, we review the beginnings of geometric graph theory in the 1930s and 40s,
which were also formative years in Erdős’s personal and mathematical life. We use this
as a starting point to give a short and biased survey of some research directions that
can be traced back more or less directly to these early developments. We put special
emphasis on open problems raised by Erdős and others, which had a large impact on
the evolution of geometric graph theory.

2 A problem in Jahresbericht—German mathematics

In 1934, Heinz Hopf and Erika Pannwitz, Hopf’s student at Friedrich Wilhelms Univer-
sity (today Humboldt University) in Berlin, posed the following problem in the problem
section of Jahresbericht der Deutschen Mathematiker-Vereinigung.

Problem 1 [HoP34] Let p0, p1, . . . , pn−1, pn = p0 be n distinct points in the plane such
that the distance conditions

d(pi, pj) ≤ 1 (0 ≤ i < j < n),

d(pi, pi+1) = 1 (i = 0, . . . , n− 1)

are satisfied. Prove that this is possible if and only if n is odd or n = 2.

Three solutions were subsequently published in 1935: by W. Fenchel (Copenhagen),
by J. W. Sutherland (Cambridge) [FeS35], and in the next issue of the journal, by H.
Baron (Berlin) [Ba35]. Other correct solutions were submitted by A. E. Mayer (Wien),
H. Baer (Frankfurt a. M.), L. Ehrlich (Berlin), J. Fox (Brooklyn), R. Frucht (Triest),
L. Goeritz (Rostock), F. Gruber (Vienna), J. Juilfs (Berlin), R. Lauffer (Graz), E.
Linés Escardó (Madrid), B. Neumann (Cambridge), L. Rédei (Mezőtúr), L. A. Santaló
(Madrid), P. Scherk (Göttingen), and W. Schulz (Berlin).

The “Annual Reports” of the German Mathematical Society were published, of
course, in German. However, many solutions and articles were sent by mathematicians
from other, non German speaking countries, mostly from Europe and from the United
States. In the 1930s, German universities played a leading role in mathematics. From
all over the world, many young talents (like Fox, Rédei, and Santaló) came to study
in Berlin, München, Hamburg, Göttingen, and elsewhere. At the 1936 International

2



Congress of Mathematicians held in Oslo, half of the plenary lectures were delivered in
German [Mo36]. When after a 14-year recess due to the war the next congress was held
at Harvard University, only one of the 21 main lectures had a German title: it was the
talk of Hopf, one of the original proposers of Problem 1. However, this time he did not
arrive from Berlin, he was Professor at ETH Zürich. Fenchel, Frucht, Neumann, and
Santaló had also fled Germany and built distinguished academic careers in Copenhagen,
Valparaiso, Canberra, and Buenos Aires. They became leading experts in convexity,
graph theory, group theory, and integral geometry. The lives of many of those who
stayed in Germany were sidetracked: Pannwitz worked for the German Cryptography
Service during the war and Juilfs became an SS Obersturmsführer. Between 1944 and
1951 the publication of Jahresbericht was halted.

Fenchel’s elegant solution to Problem 1 was based on the following observation
[FeS35]. Connect two points, pi and pj , by a segment if their distance is equal to
the diameter of the point set P = {p0, . . . , pn−1} (which is, in our case, equal to 1).
The resulting geometric graph is called the diameter graph (or the graph of diameters)
associated with P . It follows from the triangle inequality that any two edges of the
diameter graph either share an endpoint or cross each other. Suppose now that n > 2
and that P satisfies the properties in Problem 1. Since the diameter graph has no two
disjoint edges, the segments p0p1 and p2p3 must lie in the same half-plane bounded by
the line p1p2. Thus, p0 and p3 lie in the same half-plane. For the same reason, all
edges p3p4, p4p5, . . . , pn−1p0 must cross the line p1p2, hence the elements of the sequence
p3, p4, . . . , pn = p0 lie on alternating sides of the line p1p2. This is possible only if n is
odd.

3 A paper in the Monthly—Paul Erdős enters the scene

Erdős was one of the most successful problem solvers of Középiskolai Mathematikai
Lapok, an excellent Hungarian journal for high school students, founded in 1893. He
had a lifelong passion for mathematical puzzles and spoke fluent German. In 1934, the
same year, when the Hopf-Pannwitz problem appeared, Erdős received his doctorate at
Péter Pázmány University (today Loránd Eötvös University), Budapest. Because of the
increasingly anti-semitic atmosphere in Hungary, he accepted a fellowship arranged by
Louis J. Mordell, and moved first to Manchaster and four years later to Princeton. He
had access to the Jahresbericht, and it is almost certain that he came across Problem 1
shortly after it was published. We will see in the sequel that it inspired him to create a
whole new area of research in discrete geometry.

The argument of Fenchel described in the previous section can be easily modified
to yield the following statement. It first appeared in a classic paper of Erdős [Er46]
published in the American Mathematical Monthly in 1946. He generously attributed the
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result to Hopf and Pannwitz, although in this form it does not appear in [HoP34]: it
was first formulated by him.

Theorem 2 [Er46] The number of edges of the graph of diameters induced by a set of
n points in the plane is at most n. This bound can be attained for every n > 2.

In the same paper, Erdős quoted Andrew Vázsonyi’s conjecture from the mid-1930s
(see also [Er57]), according to which the number of times the diameter (the maximum
distance) can occur among n points in 3-space is at most 2n − 2. This statement was
proved independently by Grünbaum [Gr56], Heppes [He56], and Straszevicz [St57]. All
of these proofs used the notion of ball polytopes, that is, convex bodies obtained by
taking the intersection of balls of equal radii. However, as was pointed out by Kupitz,
Martini, and Perles [KuMP05], ball polytopes have some unpleasant features different
from the properties of convex polytopes. In particular, their edge-skeletons need not
be 3-connected. Therefore, making the above proofs precise requires a lengthy analysis.
Half a century later, simpler proofs were found by Perlstein and Pinchasi [PeP08] and
by Swanepoel [Sw08].

Theorem 3 ([Gr56], [He56], [St57]) The number of edges of the graph of diameters
induced by a set of n points in 3-dimensional space is at most 2n − 2. This bound can
be attained for every n > 3.

Erdős [Er46] also remarked that this statement has an interesting geometric corollary.

Corollary 4 Every (finite) set of points in 3-dimensional space can be decomposed into
4 sets of smaller diameter.

Indeed, it follows from Theorem 3 that the diameter graph associated with any finite
set of points has a vertex of degree at most 3. Removing such a vertex, one can show
by induction that the chromatic number of the diameter graph is at most 4. This is
equivalent to Corollary 4. See also [Eg55] and [HeR56].

Corollary 4 is the d = 3 special case of Borsuk’s conjecture [Bor33] which states that
any d-dimensional set of points can be decomposed into d+1 sets of smaller diameter. In
1993, Kahn and Kalai [KaK93] (see also [Ni94]) disproved Borsuk’s conjecture for large
values of d. Today the conjecture is known to fail in all dimensions d ≥ 298. See [HiR03]
and [Ra08], for a survey.

As was reported by Erdős [Er60], a simple construction due to Lenz (1955) shows
that, for a fixed d ≥ 4, the number of times the diameter can occur among n points
in d-dimensional space can grow quadratically in n. Indeed, let k = ⌊d/2⌋, and take k
concentric unit circles in Rd, in pairwise orthogonal planes. On each of these circles,
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pick ⌊n/k⌋ or ⌈n/k⌉ points very close to each other, so that their total number is n. The
diameter of the resulting point set is

√
2, and the distance

√
2 occurs 1

2(1−
1
k + o(1))n2

times. Using the Erdős-Stone theorem [ErS46], a cornerstone of extremal graph theory,
Erdős proved that this construction is asymptotically best possible.

Theorem 5 [Er60] For a fixed d ≥ 4, the maximum number of edges of the diameter
graph of a set of n points in d-dimensional space is

1

2

(
1− 1

⌊d/2⌋
+ o(1)

)
n2.

Erdős suggested that instead of estimating the number of occurrences of the largest
distance, one can also investigate the frequency of the 2nd largest, 3rd largest, etc.
distances determined by a set of n points. In particular, it was shown by Veszter-
gombi [Ve85] (see also [ErLV89]) that the i-th largest distance among n points in the
plane cannot occur more than 2in times. Morić and Pach [MoP13a] showed that for
a fixed i, the number of times the i-th largest distance can occur among n points in
3-dimensional space is O(n). The constant provided by the proof, hidden in the big-O
notation, grows exponentially in i, which can probably be much improved. The nature
of the problem again changes in dimension d larger than 3: the i-th largest distance can
occur Ω(n2) times.

Perhaps the most important contribution of Erdős’s paper [Er46] in the Monthly
was that he modified the Hopf-Pannwitz problem, as follows. Let fd(n) denote the the
maximum number of times that any distance can occur among n points in d-dimensional
space. Erdős [Er60] proved that for any d ≥ 4, fd(n) is asymptotically equal to the
maximum number of occurrences of the diameter, given in Theorem 5. The exact value
of f4(n) for every n was determined by Brass [Br97]. Swanepoel [Sw09] extended this
result to every even d ≥ 4, provided that n is sufficiently large depending on d. He
also found the maximum number of times the diameter can occur among n points in
d-dimensional space, for every d ≥ 4 and for all sufficiently large n. For some other
extensions of these results, see [ErP90] and [AvEP88].

The asymptotic behavior of the functions f2(n) and f3(n) is still a mystery. Erdős
[Er46] proved that f2(n) > n1+c/ log logn for a suitable constant c > 0, and conjectured
that this bound is not far from being tight. However, the best known upper bound is still
f2(n) = O(n4/3), which was established by Spencer, Szemerédi, and Trotter [SpST84]
thirty years ago. For alternative proofs, see [ClEG90], [Sze97], and [PaT06]. In 3-
dimensional space, we have

cn4/3 log log n < f3(n) < n3/2α(n),

where c > 0 is a constant and α(n) is an extremely slowly growing function, closely
related to the inverse of Ackermann’s function. The lower and upper bounds were
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proved in [Er60] and [ClEG90], respectively. (With no danger of confusion, in different
formulas we use the same letter c to denote different unrelated constants.)

Obviously, the number of distinct distances determined by n points in the plane is at
least

(
n
2

)
/f2(n) > cn2/3. “Though I have thought to improve this result for many years –

wrote Erdős in [Er46] – I have not been able to do so.” After many small improvements
([Mos52], [Ch84], [ChST92], [SoT03], [Ta03], [Ka05], [KaT04]), 65 years later Guth and
Katz [GuK11] got very close to verifying Erdős’s conjecture:

Conjecture 6 (Erdős [Er46]) The number of distinct distances determined by n points
in the plane is at least cn/

√
log n, for a suitable constant c > 0.

If true, the order of magnitude of this bound cannot be improved, as shown by a√
n ×

√
n piece of the integer grid. In their breakthrough paper, using a framework

set up by Elekes [ElS11], Guth and Katz have established a cn/ log n lower bound. In
fact, Erdős [Er57], [Er75], [Er84], [Er94] also made a stronger conjecture, stating that
any set of n points in the plane has an element from which there are at least cn/

√
log n

distinct distances to the other points. It does not seem to be an easy task to adapt the
Guth-Katz proof to estimate this quantity. So far the best lower bound is cn0.864.., due
to Katz and Tardos [KaT04].

We close this section by another possible generalization of Theorem 2 to higher
dimensions, different from Theorems 3 and 5.

Conjecture 7 (Z. Schur [ScPMK03]) For any positive integers d and n (n > d), the
graph of diameters induced by a set of n points in d-dimensional space contains at most
n complete subgraphs with d vertices.

For d = 3, Schur’s conjecture has been proved by Schur, Perles, Martini, and
Kupitz [ScPMK03]. In [MoP13b], it was shown Conjecture 7 would follow from the
following statement.

Conjecture 8 [MoP13b] For any positive integers d and n (n > d > 2), any two
complete subgraphs of size d of the graph of diameters induced by a set of n points in
d-dimensional space share at least d− 2 vertices.

For d = 3, Conjecture 8 is true. In fact, Dolnikov [Do00] proved the stronger state-
ment that the graph of diameters of a 3-dimensional point set contains no two disjoint
odd cycles. For larger values of d, we have been unable to verify even the weaker con-
jecture that the graph of diameters contains no two vertex-disjoint cliques of size d.

For more results and open problems related to the subject of this section, see
[BrMP05] and [ErPu95].
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4 Dropping the metric restrictions—Geometric graphs

Fenchel’s solution [FeS35] for the Hopf-Pannwitz problem (Problem 1) can be easily
modified to establish a statement, a bit stronger than Theorem 2. Recall that a geometric
graph G is a graph drawn in the plane by possibly crossing straight line edges. For
simplicity, we assume throughout that no 3 vertices (points) of G are collinear. An edge
of G is a closed segment connecting a pair of vertices. Therefore, the condition that no 2
edges are disjoint is equivalent to saying that any pair of edges share either an endpoint
or an interior point. Of course, they cannot share more than one point, because of the
assumption that no 3 vertices are collinear.

Theorem 9 (Erdős, Avital-Hanani [AvH66], Kupitz [Ku79], Perles) Every geometric
graph of n vertices that does not contain 2 disjoint edges has at most n edges. This
bound can be attained for every n > 2.

This statement first appeared in print as Problem 3 at the end of a paper writ-
ten by Shmuel Avital and Haim Hanani [AvH66], which was published in Gilyonot
Le’matematika, an Israeli journal for high school students and amateurs, edited by
Joseph Gillis at Weizmann Institute, Rehovot. It is very likely that the authors heard
the question from Paul Erdős. After being banned from entering the United States for
9 years, as an “undesirable alien,” in 1955 Erdős was appointed a “Permanent Visiting
Professor” at Technion, Haifa. Every year he spent at least one month in Israel, and
Hanani was one one of his close friends and collaborators.

When Micha Perles (Hebrew University) was told about Theorem 9 roughly ten
years after the publication of the Avital-Hanani paper, he found the following “proof
from the Book:” Suppose that there is a spider sitting at each vertex v of the graph
(web). It looks around and if it finds an edge e incident to v with the property that
within the next 180-degree range in the clockwise direction there is no other edge, it
walks to the middle of e and lays an egg. Otherwise, the spider stays at v and does not
lay an egg. Notice that if G has no 2 disjoint edges, there will be no edge left without an
egg. Therefore, the number of edges cannot exceed the number of spiders. Inspired by
Perles, Yaakov Kupitz fully characterized all geometric graphs and point configurations
for which equality holds in Theorems 9 and 2. (See also [KuMW02].) He has also found
some interesting generalizations of Theorem 9, and these results constituted his master
thesis [Ku79].

It is a natural question to ask whether Theorem 9 can be generalized to topological
graphs, that is, to graphs G drawn in the plane by possibly crossing curvilinear edges.
It is clear that we need some additional assumptions on G, because it is easy to draw a
complete topological graph in which every pair of edges intersect. We call a topological
graph simple if every pair of edges have at most one point in common, which is either a
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common endpoint or a proper crossing. Two edges are not allowed to touch each other.

In the late 1960s, independently of the above developments, John Conway defined
a thrackle as a simple topological graph, in which every pair of edges share precisely
one point: and endpoint or a proper crossing. This term may have been first used in a
commercial: fishermen referred to their entangled nets as being thrackled.

Conjecture 10 (Conway’s thrackle conjecture [Wo71]) Every thrackle of n vertices has
at most n edges. This bound can be attained for every n > 2.

Figure 1: C5 and C6 drawn as thrackles

The first linear upper bound on the number of edges of a thrackle of n vertices was
established in [LoPS97]. It was improved by Cairns an Nikolayevsky [CaN00]. The best
known upper bound, 1.428n, was proved in [FuP11]. Apart from the case of straight-line
thrackles (Theorem 9, Conway’s conjecture is known to be true for x-monotone thrackles
(for which any vertical line intersects every edge in at most one point) [PaSt11] and for
outerplanar thrackles (whose vertices lie on a circle and all edges in its interior) [CaN12].
Perhaps the next step would be to verify the conjecture for thrackles in which every edge
is the union of at most 2 (or at most a bounded number of) x-monotone pieces.

Avital and Hanani [AvH66] asked the question that at most how many edges can
a geometric graph of n vertices have if it contains no k pairwise disjoint edges. For
convex geometric graphs, that is, for geometric graphs whose vertices lie on a closed
convex curve, Kupitz [Ku79] proved that this maximum is equal to (k − 1)n, for all
n > 2(k − 1). For arbitrary geometric graphs, in the special case k = 3, the first
linear upper bound (of roughly 6n) was established by Alon and Erdős [AlE89]. It
was subsequently improved by O’Donnell and Perles (unpublished) and by Goddard,
Katchalski, and Kleitman [GoKK96]. The following asymptotically tight bound was
found by Černý [Ce05].
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Theorem 11 (Černý [Ce05]) Every geometric graph of n vertices which does not contain
3 disjoint edges has at most 2.5n edges. This bound is tight up to an additive constant.

For larger values of k, the first linear upper bound, O(k4n), for the number of edges of
a geometric graph G with no k disjoint edges was given by Pach and Törőcsik [PaTo94].
After an initial improvement by G. Tóth and Valtr [ToV99], Tóth [To00] established the
upper bound |E(G)| ≤ O(k2n); see also [Vi09]. The following conjecture is perhaps too
optimistic.

Conjecture 12 The maximum number of edges of a geometric graph of n vertices that
contains no k disjoint edges is O(kn).

It is perfectly possible that this conjecture remains true for simple topological graphs.
However, in this case, even for k = 3, we do not have a linear upper bound in n on the
number of edges. All we know is that, according to [PaTo10], the maximum number
of edges of a simple topological graph with n vertices that contains no k disjoint edges
is n(log n)O(k). In particular, it follows that a complete simple topological graph with
n vertices has Ω( logn

log logn) pairwise disjoint edges. Fox and Sudakov [FoS09] improved

this bound to Ω(log1+ε n), for a suitable ε > 0. Presently, the best known result in this
direction is due to Suk [Su12].

Theorem 13 (Suk [Su12]) Every complete simple topological graph of n vertices has
Ω(n1/3) disjoint edges.

An alternative proof of this bound was found by Fulek and Ruiz-Vargas [FuR13]. If
the strengthening of Conjecture 12 to all simple topological graphs is true, it immediately
implies

Conjecture 14 Every complete simple topological graph of n vertices has Ω(n) disjoint
edges.

For geometric graphs G (in fact, for topological graphs drawn with x-monotone
edges), Conjecture 14 is obviously true. Ordering the vertices with respect to their
x-coordinates and taking all edges between consecutive vertices, we obtain a non-self-
intersecting Hamilton path in G. Taking every other edge of this path, we get a set of
⌊n/2⌋ pairwise disjoint edges. As far as I know, for complete simple topological graphs
we do not have any lower bound for the size of the longest non-selfintersecting path,
comparable to the one given by Suk’s theorem (Theorem 13). The best bound I am
aware of is Ω(log1/6 n); see [PaSoT03].

Conjecture 15 There exists ε > 0 such that every complete simple topological graph on
n vertices has a non-selfintersecting path of length at least nε.

No example is known in which the size of the longest non-selfintersecting path is o(n).
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5 Relaxations of planarity

For more than two decades starting from the 1940s, one of Erdős’ contemporaries,
György Hajós, made persistent efforts to settle the 4-color conjecture for planar graphs.
He conjectured that every graph of chromatic number k contains a subdivision (“topo-
logical subgraph”) of a complete graph with k vertices. For k = 5, this would of course
imply the 4-color theorem. Unfortunately, we still do not know if Hajós’ conjecture is
true in this case. However, for k ≥ 7, the conjecture was disproved by Catlin [Cat79],
and shortly after Erdős and Fajtlowicz [ErF81] discovered that the conjecture combined
with Turán’s theorem [Tu41] would imply that every graph G with at least constant
times k3 vertices has k vertices that induce either a complete subgraph or an empty
subgraph in G. (See also [Th05].) However, in his classic note [Er47] written 30 years
earlier, Erdős used the “probabilistic method” to prove the existence of graphs with 2k/2

vertices that do not have this property.

However, a result much weaker than Hajós’ conjecture, first proposed in the doc-
toral dissertation of Rudolf Halin, turned out to be true. Dirac [Di65] and Jung [Ju65]
observed that an idea of Wagner [Wa64] can be used to establish the existence of a
function f(k) with the property that every graph with chromatic number at least f(k)
contains a subdivision of a complete graph Kk with k vertices. Surprisingly, Mader
[Ma67] found a much stronger result with a much simpler proof: There also exists a
function g(k) such that every graph of n vertices and more than g(k)n edges contains
a subdivision of Kk. (Every graph of chromatic number f(k) contains a subgraph in
which every vertex has degree at least f(k)− 1.) The correct order of magnitude of the
function g(k) was determined 30 years later by Komlós and Szemerédi [KoSz96] and by
Bollobás and Thomason [BoT98]: g(k) = Θ(k2). This settled a conjecture of Erdős and
Hajnal [ErH64] and Mader [Ma67]. Another famous result of this kind was conjectured
by Dirac [Di64].

Theorem 16 (Mader [Ma98]) For every n ≥ 3, the maximum number of edges that a
graph with n vertices can have without containing a subdivision of K5 is 3n− 6.

The above statements are usually discussed in the framework of “topological graph
theory” (see [MohT01]). They do not depend on the particular drawing of G. They
describe “global” properties of graphs G with more edges than how many planar graphs
can have, and one does not have much control of the size of the forced subdivisions. In
what follows, we would like to discuss some problems related to “local” properties of
geometric or topological graphs.

By Euler’s theorem, if a geometric or topological graph G has more than 3n − 6
edges, two of its edges must cross each other. (A crossing occurs when two edges share
a common interior point.) In fact, if G has much more than 3n − 6 edges, the number
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of crossings increases dramatically. Erdős and Guy conjectured, and Ajtai, Chvátal,
Newborn, Szemerédi [AjCNS82] and, independently, Leighton [Le83] proved that, if the
number of edges, e, satisfies e > 3n − 6, there are at ce3/n2 crossings, where c is a
suitable positive constant. The best known value of the constant c > 1024

31827 > 0.032 was
found in [PaRTT06].

What happens if, instead of a crossing pair of edges, we want to guarantee the exis-
tence of some larger configurations involving several crossings? What kind of unavoidable
substructures must occur in every geometric or topological graph G having n vertices
and more than Cn edges, for an appropriately large constant C > 0?

A geometric or topological graph is called k-quasiplanar if it contains no k pairwise
crossing edges.

Conjecture 17 For any positive integer k, there is a constant Ck such that the number
of edges of any k-quasiplanar topological graph with n vertices is at most Ckn.

Figure 2: Four pairwise crossing edges in a topological graph

For k = 3, for simple topological graphs (i.e., where every pair of edges cross at most
once), Conjecture 17 was proved in [AgAPP97]. Without the simplicity condition, the
statement was first proved in [PaRT03]. The best known upper bound of roughly 8n
was established by Ackerman and Tardos [AcT07], who also proved that the maximum
number of edges that a simple 3-quasiplanar topological graph can have is is 6.5n+O(1).
For k = 4, the conjecture has been verified by Ackerman [Ac09].

For larger values of k, Conjecture 17 is still open. The upper bound n(log n)O(k)

for the number of edges of a simple k-quasiplanar topological graph was first proved
in [PaSS97], and then for all k-quasiplanar topological graphs in [PaRT03]. This was
further improved to n(log n)O(log k) by Fox and Pach [FoP12]. For simple topological
graphs, presently the best known upper bound is (n log n)αk(n), where αk(n) denotes
an extremely slowly growing function related to the inverse of the Ackermann function.
It was established in [FoPS11]. For k-quasiplanar geometric graphs and, more generally,
for simple topological graphs whose edges are represented by x-monotone arcs, Valtr
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[Va97],[Va98] showed that the number of edges cannot exceed ckn log n. Extending
Valtr’s ideas, Fox,Pach, and Suk proved the following.

Theorem 18 [FoPS11] The number of edges of a k-quasiplanar topological graph with
n vertices, the edges of which are represented by x-monotone arcs, is at most 2ck

6
n log n,

for a suitable absolute constant c.

Erdős raised the question whether every system of continuous arcs in the plane with
no k pairwise intersecting members can be split into a constant number, ck, of subsystems
such that no two arcs belonging to the same subsystem intersect. He emphasized the first
interesting special case, where k = 3 and the arcs are straight-line segments. A positive
answer to Erdős’ question would imply that Conjecture 17 is true. To see this, observe
that no k members of the system of edges (open arcs) of a k-quasiplanar topological graph
G intersect. If this system can be decomposed into ck subsystems consisting of disjoint
arcs, then one of these subsystems has at least |E(G)|/ck members. The corresponding
edges form a planar subgraph of G, therefore we would obtain |E(G)|/ck ≤ 3n − 6,
where n ≥ 3 denotes the number of vertices of G. This would imply |E(G)| = Ok(n),
as required. However, Pawlik, Kozik, Krawczyk, Lasoń, Miczek, Trotter, and Walczak
[PawK12] constructed systems of n segments, no 3 of which are pairwise intersecting,
such that they cannot be decomposed into fewer than log log n subsystems of disjoint
segments. Therefore, the answer to Erdős’ question is no. It is interesting to observe
that Conjecture 17 would also follow from the following weaker statement, which was
not refuted by the construction of Pawlik et al.

Conjecture 19 For any positive integer k, there is a constant εk > 0 with the property
that every system on n continuous arcs (or segments) in the plane, no k of which are
pairwise intersecting, has at least εkn disjoint members.

As the number of edges of a topological graph G with n vertices substantially exceeds
the critical threshold 3n− 6, more complicated crossing configurations appear. A k × l
grid in G is a pair of disjoint subsets E1, E2 ⊂ E(G) with |E1| = k and |E2| = l such
that every edge in E1 crosses all edges in E2. It was proved in [PaPST05] that for any
integer k > 0, there is a constant Ck such that every topological graph with n vertices
and more than Ckn edges has a k × k grid. See [FoPT10], for a different proof. The
strongest result in this direction was proved by Tardos and Tóth [TaT07]: There is a
constant Ck such that in every topological graph with n vertices and more than Ckn
edges one can find 3 disjoint k-element sets of edges such that two of the subsets consist
of edges incident to a vertex and every pair of edges from different subsets cross.

At first glance, one might believe that it is much easier to guarantee the existence
of a k × k grid in “general position” in the sense that no pair of its edges share an
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endpoint. However, in this case the proof breaks down and we can only prove that every
topological graph with n vertices and at least Ckn log∗ n edges contains such a grid,
where log∗ denotes the iterated logarithm function [AcFPS09].

Conjecture 20 (Ackerman, Fox, Pach, Suk [AcFPS09]) For any integers k, l ≥ 1, there
is a constant Ck,l such that every topological graph with n vertices which contains no k×l
grid with distinct vertices has at most Ck,ln edges.

This conjecture is known to be true for l = 1.
In lack of nontrivial examples (or counterexamples), one can formulate an even bolder

conjecture. We call a k × l grid natural if it consists of a set of k disjoint (noncrossing)
edges and a set of l disjoint edges with all 2(k + l) endpoints distinct, such that every
edge in the first subset crosses every edge in the second. There are complete topological
graphs in which every pair of edges cross, so they contain no natural 2× 1 grid. Hence,
to strengthen Conjecture 20, we have to make an additional distinction. For instance,
we may restrict our attention to simple topological graphs or to geometric graphs.

Conjecture 21 [AcFPS09] For any integers k, l ≥ 1, there is a constant Ck,l such that
the number of edges of any simple topological graph with n vertices which contains no
k × l natural grid is at most Ck,ln.

Even for geometric graphs with no natural k × k grid, the best known upper bound
for the number of edges is O(k2n log2 n). For convex geometric graphs, the validity of
the conjecture follows from [KlM07]. In general, the only case in which Conjecture 21
has been verified is k + 2, l + 1 (see [AcFPS09]).

We close this section with another relaxation of planarity, where we do have nontrivial
constructions and we know that the number of edges forcing some crossing subconfig-
urations is superlinear. For any k ≥ 3, a topological graph G is called k-locally planar
if G has no selfintersecting path of length at most k. Roughly speaking, this means
that the embedding of the graph is planar in a neighborhood of radius k/2 around any
vertex. It was shown by Pach, Pinchasi, Tardos, and Tóth [PaPTT04] that there exist
3-locally planar geometric graphs with n vertices and with at least constant times n log n
edges. For larger values of k, Tardos [Ta13] constructed a sequence of k-locally planar
geometric graphs with n vertices and a superlinear number of edges (approximately n
times the ⌊k/2⌋ times iterated logarithm of n). From the other direction, we only have
a much weaker bound.

Theorem 22 [PaPTT04] The number of edges of a 3-locally planar topological graph
with n vertices is O(n3/2).
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This result is probably far from being optimal. For 3-locally planar geometric graphs
(and, more generally, for topological graphs with x-monotone edges) the Ω(n log n)
bound is known to be tight [PaPTT04]. Boutin [Bou03] showed that the number of
edges of 3-locally planar convex geometric graph with n vertices is O(n).
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Hajnal on topological complete subgraphs, European J. Combin. 19 (1998), 883–887.

[Bor33] K. Borsuk: Drei Sätze ber die n-dimensionale euklidische Sphäre, Fund. Math.
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Ann. Univ. Sci. Budapest. Eötv”os Sect. Math. 7 (1964), 143–149.
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[MoP13a] F. Morić and J. Pach: Large simplices determined by finite point sets, Beiträge
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