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Abstract. A tangle is a graph drawn in the plane so that any pair of
edges have precisely one point in common, and this point is either an
endpoint or a point of tangency. If we allow a third option: the com-
mon point may be a proper crossing between the two edges, then the
graph is called a tangled thrackle. We establish the following analogues
of Conway’s thrackle conjecture: The number of edges of a tangle can-
not exceed its number of vertices, n. We also prove that the number of
edges of an x-monotone tangled thrackle with n vertices is at most n+1.
Both results are tight for n > 3. For not necessarily x-monotone tangled
thrackles, we have a somewhat weaker, but nearly linear, upper bound.

1 Introduction

A drawing of a simple undirected graph G is a mapping f that assigns to each
vertex a distinct point in the plane and to each edge uv a simple continuous curve
(i.e., a homeomorphic image of a closed interval) connecting f(u) and f(v), not
passing through the image of any other vertex. For simplicity, the point f(u)
assigned to vertex u is also called a vertex of the drawing, and if it leads to no
confusion, it is also denoted by u. In the same vein, the curve assigned to uv is
called an edge of the drawing and it is also denoted by uv. V (G) and E(G) will
stand for the vertex set and edge set of the underlying graph G, as well as of its
drawing. Throughout the paper, we assume that no three edges have an interior
point in common. Paths and cycles on n vertices will be denoted by Pn and Cn,
respectively.

A drawing of G is a thrackle if every pair of edges have precisely one point
in common, either a common vertex or a proper crossing. In other words, in a
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At a proper crossing of two edges, one edge passes from one side of the other edge
to its other side.



thrackle, every two nonadjacent edges cross exactly once, and adjacent edges
do not cross. If it creates no confusion, the underlying abstract graph G is also
called a thrackle. In the late sixties, Conway [2], [19], [21] conjectured that every
thrackle has at most as many edges as vertices. In spite of considerable efforts,
this conjecture is still open. If true, the conjecture would be tight, as any cycle
other than C4 is a thrackle [22]. Lovász, Pach, and Szegedy established the
first linear upper bound of 2n − 3 on the number of edges in a thrackle on n

vertices, by proving that (the underlying graph of) every bipartite thrackle is
actually planar. This bound has been improved since [3], and the current record
of 167

117
n < 1.43n is due to Fulek and Pach [8]. For related results, see [1], [4], [5],

[10], [13], [14], and for applications of thrackles, consult [1], [9].
Assuming the aforementioned conjecture is true, Woodall characterized all

thrackles: a graph is a thrackle if and only if it has at most one odd cycle, it
contains no C4, and each of its connected components contains at most one cycle.
This reduces Conway’s conjecture to verifying that each graph consisting of two
even cycles that share a single vertex is not a thrackle [14], [22]. Erdős resolved
the conjecture for thrackles drawn by straight-line edges (see [15] for an elegant
proof of Perles, and its relation to some classical work on diameters of point
sets [11]). Cairns and Nikolayevsky [6] proved that every outerplanar thrackle
has at most as many edges as vertices. In [15], Pach and Sterling verified the
conjecture for the case of x-monotone thrackles, that is, thrackles whose edges
are curves that meet every vertical line in at most one point.

Inspired by recent work on the number of tangencies in families of curves
in various settings (cf. [7], [16]), we propose two new variants of thrackles. A
drawing of a graph is called a tangle if every pair of edges have precisely one point
in common: either a common vertex or a touching point (a point of tangency). In
other words, in a tangle, any two nonadjacent edges touch at exactly one interior
point, at which the two edges do not cross. We prove the analogue of Conway’s
conjecture for this variant.

Theorem 1. Let n ≥ 3. The maximum number of edges that a tangle of n

vertices can have is n.

A drawing of a graph is called a tangled thrackle if every pair of edges have
precisely one point in common: either a common vertex, or a point of tangency,
or a proper crossing (at which an edge passes from one side of the other edge to
the other side). In other words, any two nonadjacent edges of a tangled thrackle
either touch exactly once, or cross exactly once.

We conjecture the following.

Conjecture 1. Every tangled thrackle on n vertices has O(n) edges.

We confirm our conjecture in the case of x-monotone drawings. Moreover, in
this case we have a sharp bound.

A thrackle is called outerplanar if its vertices lie on a circle whose interior contain
all other edges.



Theorem 2. Let n ≥ 4. The maximum number of edges that an x-monotone
tangled thrackle of n vertices can have is n+ 1.

In the general case, the best upper bound we have is slightly superlinear.

Theorem 3. Let tt(n) denote the maximum number of edges that a tangled
thrackle of n vertices can have. Then we have

⌊

7n

6

⌋

≤ tt(n) ≤ cn log12 n,

for some constant c.

2 Proof of Theorem 1

Our proof of Theorem 1 is based on the fact that cycle Ck is a tangle if and only
if k ∈ {3, 4} (see Corollary 2), which stands in sharp contrast to the fact that
every cycle, except C4, is a thrackle.

First, we prove the following lemma.

Lemma 1. If G is a tangle that contains P5 or C4 as a subgraph, then G has
no other edges.

Proof. Let G be a tangle, and let H be its subgraph isomorphic to either P5 or
C4. Let vi, i = 1, . . . , 5 denote the vertices of H, and ei = vivi+1 denote the edges
of H. For (i, j) ∈ {(1, 3), (1, 4), (2, 4)} let tij denote the point of tangency of ei
and ej . Note that if H ∼= C4, then v1 and v5 are identical, and t14 is not defined.

Let H̃ be the (drawing of the) planar graph, obtained from G by introducing
new vertices of degree four at the points of tangency tij , and defining the edges

of H̃ maximal pieces of the edges of G that connect two vertices in V (H̃) and
contain no other point from V (H̃). IfH ∼= P5, then |V (H̃)| = 8 and |E(H̃)| = 10.
Similarly, if H ∼= C4, then |V (H̃)| = 6 and |E(H̃)| = 8. Hence, in both cases, H̃
has four faces.

Given a face f of H̃, let the border of f be defined as the the set B(f) of all
edges ei ∈ E(H̃) that contribute infinitely many points to the boundary of f .
We claim that the borders of the four faces of H̃ are precisely

{e1, e2, e3}, {e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}. (*)

Indeed, this is trivial in the case H ∼= C4, since the tangle drawing of H
on the sphere has to be topologically equivalent (on the sphere) to Figure 1(c).
If H ∼= P5, then let H ′ ∼= P4 be the subgraph of H induced by vertices vi,
i = 1, . . . , 4. The tangle drawing of H ′ has to be topologically equivalent to
either (a) or (b) in Figure 1.

According to the order of v4, v5, t24, and t14 along the edge e4, and according
to which face of H̃ the vertex v5 belongs to, we have several cases, depicted in
Figure 2. It is easy to check that in each case H̃ has four faces, and their borders
are the triples listed in (*).
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Fig. 1. (a), (b) tangled drawings of P4; (c) tangled drawing of C4.

Suppose by contradiction that G contains another edge e. Since G is a tangle,
e has precisely one point in common with each edge ei, i = 1, . . . , 4. On the other
hand, e must be contained in a face of H̃. However, according to (*), no border
B(f) of a face of H̃ contains all edges ei, i = 1, . . . , 4. Using our assumption that
no three edges have an interior point in common, this is a contradiction. ⊓⊔

The following is an immediate corollary to Lemma 1.

Lemma 2. Let k ≥ 3. A cycle Ck is a tangle if and only if k = 3 or 4.

Now we are in a position to complete the proof of Theorem 1. Assume G is a
tangle with n vertices and e ≥ n+1 edges. We can assume G is connected; other-
wise, we can find a component of G with more edges than vertices and continue
working with it. Note that G cannot contain a C4 as a subgraph; otherwise, G
would contain an additional edge, contradicting Lemma 1. Since G contains at
least two more edges than its spanning tree, G has two cycles, C and C ′. In view
of Lemma 2, C and C ′ must be triangles. They cannot share an edge; otherwise,
G would have a C4. Since G is connected, there exists a shortest path ℓ (possibly
of length 0) between a vertex v of C and a vertex v′ of C ′. Taking a path of
length 2 in C and in C ′, which starts at v and v′, respectively, and connecting
them by ℓ, we obtain a copy of P5 in G. Moreover, the vertices of this path P

span at least one additional edge (e.g., the third edge of C that does not belong
not to P ). This contradicts Lemma 1.

It is easy to see that Theorem 1 is tight for every n ≥ 3. Indeed, all stars
with an additional edge are tangles (see Figure 3: the additional edge can be
drawn so that it touches every edge not adjacent to it precisely once).

3 Proof of Theorem 2

Let G(V,E) be an x–monotone tangled thrackle on n vertices. For any vertex v,
let x(v) denote the x–coordinate of v. We can also assume that G has no isolated
vertex.

In all figures in this paper, vertices marked by empty circles are proper points of
tangency, while the original vertices of the graph are represented by black dots.



Fig. 2. Tangled drawings of P5.

Call vertex v of G a right vertex (resp. left vertex) if for every edge uv incident
to it we have x(u) < x(v) (resp. x(u) > x(v)). Any vertex that is neither a right
vertex nor a left one is said to be two–sided. Obviously, G has at most one two–
sided vertex. Indeed, if v and v′ were two such vertices with x(v) ≤ x(v′), then
any edge whose right endpoint is v would be disjoint from all edges whose left
endpoint is v′, contradicting the definition of a tangled thrackle.

We distinguish two cases.

Case 1. G has no two–sided vertex.

Among all edges e that share the same left (or right) endpoint v, there is a
highest edge, that is, one that runs above all other edges e in a small nonempty
open interval (x(v), x(v) + ε). (The lowest edge can be defined analogously.)

For each left vertex, delete the highest edge incident to it, and for each right
vertex delete the lowest edge. In this way, we removed at most n edges. Suppose
that there is a remaining edge uv with x(u) < x(v). Then G must have an
edge uu′ running above uv, and an edge v′v running below it. Clearly, the edges
uu′ and v′v cannot have any point in common, contradicting the definition of a
tangled thrackle. Therefore, G has at most n edges.

Case 2. G has a two–sided vertex v.

Replace v by two vertices, v1 and v2, very close to the original position
of v, such that v1 is to the left of v2. Slightly modify the drawing of G by
reconnecting every edge uv ∈ E(G) to the vertex v2 if x(u) < x(v) and to v1
if x(u) > x(v), in such a way that every edge u2v2 crosses all edges v1u1, and



Fig. 3. A star with an additional edge (on the left) and its tangle drawing (on the
right).

the resulting drawing G′ remains an x-monotone tangled thrackle. G′ has n+ 1
vertices, and none of them is two-sided. Therefore, by the previous case, we have
|E(G′)| = |E(G)| ≤ n+ 1, as required.

It remains to prove that Theorem 2 is tight, that is, for every n ≥ 4 there
exist x–monotone tangled thrackles with n vertices and n+ 1 edges.

Lemma 3. Let G be an x–monotone tangled thrackle, and let uv be an edge of
G with x(u) < x(v) which does not touch any other edge. Suppose that uv is
the lowest among all edges whose left endpoint is u, and the lowest among all
edges whose right endpoint is v. Let G′ denote the graph obtained from G by
adding two new vertices, u′ and v′, and replacing the edge uv by the path uv′u′v

consisting of the edges uv′, u′v′, and u′v.
Then G′ can also be drawn as an x–monotone tangled thrackle.

Proof. Place u′ above u, very close to it, and place v′ above v, very close to it.
Draw the new edges uv′, u′v′, and u′v so that

(a) they all run very close to the original edge uv;
(b) they all cross every edge that used to cross uv in G;
(c) every edge whose left endpoint is u crosses both u′v and u′v′;
(d) every edge whose right endpoint is v crosses both uv′ and u′v′. ⊓⊔

A cycle of length 4 with a diagonal can be drawn as an x–monotone tangled
thrackle. It has n = 4 vertices and n+1 = 5 edges. Repeatedly applying Lemma 3
(first with the edge uv, then for uv′, say, etc.), for every even n ≥ 6 we obtain
an x–monotone tangled thrackle with n vertices and n+ 1 edges. See Figure 4.

Another construction, suggested by Nikolai Hähnle, is depicted on Figure 5.
It consists of a cycle of length 4 with a diagonal uz, plus a number of additional
vertices of degree one connected to u.

4 Proof of Theorem 3

Lemma 4. There are no five curves in the plane with disjoint endpoints such
that any two of them have precisely one point in common, a point of tangency,
and all of these points are distinct.
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Fig. 4. C4 with diagonal uz, drawn as an x–monotone tangled thrackle (on the left);
edge uv has been replaced by path uv

′
u
′
v (on the right).

Fig. 5. A graph with n vertices and n + 1 edges (on the left) and its drawing as an
x–monotone tangled thrackle (on the right).

Proof. Suppose there exist five such curves. Fix a different point on each of them,
and connect each pair of points using two pieces of the corresponding curves that
meet at their point of tangency. This way we obtain a planar drawing of K5,
which may be degenerate in the sense that two adjacent edges may overlap. By
slightly perturbing this drawing, if necessary, we can eliminate the common arcs
and produce a crossing-free proper drawing of K5, contradicting Kuratowski’s
theorem. ⊓⊔

A graph G drawn in the plane so that any two edges have at most one point
in common, which is either a common endpoint or a proper crossing (but not a
touching point) is called a simple topological graph. Two edges of G are said to
be disjoint if they do not share an endpoint or an interior point. We need the
following result from [18].

Lemma 5. [18] For any k > 0, there is a constant ck such that every simple
topological graph with n vertices and no k pairwise disjoint edges has at most
ckn log4k−8 n edges.

Proof of Theorem 3. Let G be a tangled thrackle with n vertices and more
than c5n log12 n edges, where c5 > 0 is the constant that appears in Lemma 5.

Slightly modifying the edges of G near their points of tangencies, we can
attain that no two edges touch each other, and in the process we do not lose any
proper crossings. The resulting drawing is a simple topological graph that has no
five pairwise disjoint edges. Indeed, the corresponding five edges of G would be



pairwise touching, which contradicts Lemma 4. Thus, the upper bound follows
from Lemma 5.

For the lower bound, start with the tangled thrackle drawing of C6 together
with one of its main diagonals, shown in Figure 6. It has the property that there
is a vertical line ℓ that intersects every edge exactly once. Pick a point p on ℓ.
Using an affine transformation, “squash” this drawing parallel to the direction
of the y–axis, to obtain a very “flat” copy of this drawing that lies in a small
neighborhood of a horizontal segment. By rotating this drawing about p through
k − 1 different small angles, we can obtain a tangled thrackle. Each copy alone
satisfies the conditions, and any pair of edges from different copies cross exactly
once. The resulting drawing has 6k vertices and 7k edges, which proves the lower
bound. 2

v1

v5
v3

v4

v6

v2

Fig. 6. A tangled thrackle drawing of C6 with its main diagonal v1v4.

Remark. We can modify the notion of tangles and tangled thrackles by allowing
several edges to touch one another at the same point.

A drawing of a graph is called a degenerate tangle if every pair of edges have
precisely one point in common, either a common vertex or a touching point
(point of tangency), where several edges may touch one another at the same
point. In a degenerate tangled thrackle, there is a third option: two edges are
also allowed to properly cross each other. It is easy to see that the underlying
graph of a degenerate tangle is a planar graph. Therefore, the number of edges
of a degenerate tangle of n vertices is at most 3n − 6. Our proof of Theorem



1 breaks down in this case. Not every degenerate tangle can be redrawn as a
tangle (consider, for example, a cycle of length four together with one of its
main diagonals).

On the other hand, the proof of Theorem 2 goes through without any change
for x-monotone degenerate tangled thrackles. It yields that any such graph with
n vertices has at most n + 1 edges. We believe that a linear upper bound may
hold even if we drop the assumption of x-monotonicity.
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