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Abstract
The Vapnik-Chervonenkis dimension (in short, VC-dimension) of a graph is defined as the VC-
dimension of the set system induced by the neighborhoods of its vertices. We show that every
n-vertex graph with bounded VC-dimension contains a clique or an independent set of size
at least e(logn)1−o(1) . The dependence on the VC-dimension is hidden in the o(1) term. This
improves the general lower bound, ec

√
logn, due to Erdős and Hajnal, which is valid in the class

of graphs satisfying any fixed nontrivial hereditary property. Our result is almost optimal and
nearly matches the celebrated Erdős-Hajnal conjecture, according to which one can always find
a clique or an independent set of size at least eΩ(logn). Our results partially explain why most
geometric intersection graphs arising in discrete and computational geometry have exceptionally
favorable Ramsey-type properties.

Our main tool is a partitioning result found by Lovász-Szegedy and Alon-Fischer-Newman,
which is called the “ultra-strong regularity lemma” for graphs with bounded VC-dimension. We
extend this lemma to k-uniform hypergraphs, and prove that the number of parts in the partition
can be taken to be (1/ε)O(d), improving the original bound of (1/ε)O(d2) in the graph setting. We
show that this bound is tight up to an absolute constant factor in the exponent. Moreover, we
give an O(nk)-time algorithm for finding a partition meeting the requirements in the k-uniform
setting.
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1 Introduction

During the relatively short history of computational geometry, there were many breakthroughs
that originated from results in extremal combinatorics [23]. Range searching turned out to
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be closely related to discrepancy theory [9], linear programming to McMullen’s Upper Bound
theorem and to properties of the facial structure of simplicial complexes [40], motion planning
to the theory of Davenport-Schinzel sequences and to a wide variety of other forbidden
configuration results [35], graph drawing and VLSI design to the crossing lemma, to the
Szemerédi-Trotter theorem, and to flag algebras [41]. A particularly significant example
that found many applications in discrete and computational geometry, was the discovery of
Haussler and Welzl [26], according to which many geometrically defined set systems have
bounded Vapnik-Chervonenkis dimension. Erdős’s “Probabilistic Method” [5] or “Random
Sampling” techniques, as they are often referred to in computational context, had been
observed to be “unreasonably effective” in discrete geometry and geometric approximation
algorithms [24]. Haussler and Welzl offered an explanation and a tool: set systems of bounded
Vapnik-Chervonenkis dimension admit much smaller hitting sets and “epsilon-nets” than
other set systems with similar parameters.

It was also observed a long time ago that geometrically defined graphs and set systems
have unusually strong Ramsey-type properties. According to the quantitative version of
Ramsey’s theorem, due to Erdős and Szekeres [19], every graph on n vertices contains a
clique or an independent set of size at least 1

2 logn. In [14], Erdős proved that this bound
is tight up to a constant factor. However, every intersection graph of n segments in the
plane, say, has a much larger clique or an independent set, whose size is at least nε for some
ε > 0 [29]. The proof extends to intersection graphs of many other geometric objects [3].
Interestingly, most classes of graphs and hypergraphs in which a similar phenomenon has
been observed turned out to have (again!) bounded Vapnik-Chervonenkis dimension. (We
will discuss this fact in a little more detail at the end of the Introduction.)

The problem can be viewed as a special case of a celebrated conjecture of Erdős and
Hajnal [15], which is one of the most challenging open problems in Ramsey theory. Let P
be a hereditary property of finite graphs, that is, if G has property P , then so do all of
its induced subgraphs. Erdős and Hajnal conjectured that for every hereditary property P
which is not satisfied by all graphs, there exists a constant ε(P ) > 0 such that every graph
of n vertices with property P has a clique or an independent set of size at least nε(P ). They
proved the weaker lower bound eε(P )

√
logn. According to the discovery of Haussler and Welzl

mentioned above, the Vapnik-Chervonenkis dimension of most classes of “naturally” defined
graphs arising in geometry is bounded from above by a constant d. The property that the
Vapnik-Chervonenkis dimension of a graph is at most d, is hereditary.

The aim of this paper is to investigate whether the observation that the Erdős-Hajnal
conjecture tends to hold for geometrically defined graphs can be ascribed to the fact that
they have bounded VC-dimension. Our first theorem (Theorem 1 below) shows that the
answer to this question is likely to be positive. To continue, we need to agree on the basic
definitions and terminology.

Let F be a set system on a ground set V . The Vapnik-Chervonenkis dimension (VC-
dimension, for short) of F is the largest integer d for which there exists a d-element set S ⊂ V
such that for every subset B ⊂ S, one can find a member A ∈ F with A ∩ S = B. Given a
graph G = (V,E), for any vertex v ∈ V , let N(v) denote the neighborhood of v in G, that is,
the set of vertices in V that are connected to v. We note that v itself is not in N(v). Then
we say that G has VC-dimension d, if the set system induced by the neighborhoods in G, i.e.
F = {N(v) ⊂ V : v ∈ V }, has VC-dimension d.

The VC-dimension of a set system is one of the most useful combinatorial parameters
that measures its complexity, and, apart from its geometric applications, it has proved to
be relevant in many other branches of pure and applied mathematics, such as statistics,
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logic, learning theory, and real algebraic geometry. The notion was introduced by Vapnik
and Chervonenkis [42] in 1971, as a tool in mathematical statistics. Kranakis et al. [28]
observed that the VC-dimension of a graph can be determined in quasi-polynomial time and,
for bounded degree graphs, in quadratic time. Schaefer [34], addressing a question of Linial,
proved that determining the VC-dimension of a set system is Σp3-complete. For each positive
integer d, Anthony, Brightwell, and Cooper [6] determined the threshold for the Erdős-Rényi
random graph G(n, p) to have VC-dimension d (see also [27]). Given a bipartite graph F ,
its closure is defined as the set of all graphs that can be obtained from F by adding edges
between two vertices in the same part. It is known (see [30]) that a class of graphs has
bounded VC-dimension if and only if none of its members contains any induced subgraph
that belongs to the closure of some fixed bipartite graph F .

Our first result states that the Erdős-Hajnal conjecture “almost holds” for graphs of
bounded VC-dimension.

I Theorem 1. Let d be a fixed positive integer. If G is an n-vertex graph with VC-dimension
at most d, then G contains a clique or independent set of size e(logn)1−o(1) .

Note that the dependence of the bound on d is hidden in the o(1)-notation.
There has been a long history of studying off-diagonal Ramsey numbers, where one is

interested in finding the maximum size of an independent set guaranteed in a Ks-free graph
on n vertices with s fixed. An old result of Ajtai, Komlós, and Szemerédi [1] states that all
such graphs contain independent sets of size cn

1
s−1 (logn)

s−2
s−1 . In the other direction, Spencer

[38] used the Lovász Local Lemma to show that there are Ks-free graphs on n vertices and
with no independent set of size c′n

2
s+1 logn. This bound was later improved by Bohman

and Keevash [8] to c′n
2
s+1 (logn)1− 2

(s+1)(s−2) . In Section 4, we give a simple proof, extending
Spencer’s argument, showing that there are Ks-free graphs with bounded VC-dimension and
with no large independent sets.

I Theorem 2. For fixed s ≥ 3 and d ≥ 5 such that d ≥ s+ 2, there exists a Ks-free graph
on n vertices with VC-dimension at most d and no independent set of size cn

2
s+1 logn, where

c = c(d).

For large s (s > d), a result of Fox and Sudakov (Theorem 1.9 in [22]) implies that all
n-vertex Ks-free graphs G with VC-dimension d contain an independent set of size n

1
c log s

where c = c(d).

Regularity lemma for hypergraphs with bounded VC-dimension. First, we general-
ize the definition of VC-dimension for graphs to hypergraphs. Given a k-uniform hypergraph
H = (V,E), for any (k − 1)-tuple of distinct vertices v1, . . . , vk−1 ∈ V , let

N(v1, . . . , vk−1) = {u ∈ V : {v1, . . . , vk−1, u} ∈ E(H)}.

Then we say that H has VC-dimension d, if the set system

F = {N(v1, . . . , vk−1) ⊂ V : v1, . . . , vk−1 ∈ V }

has VC-dimension d. Of course, the hyperedges of H form a set system, but the VC-dimension
of this set system is usually different from the VC-dimension of H. The latter one is defined
as the VC-dimension of the set system F induced by the neighborhoods of the vertices of H,
rather than by the hyperedges.

SoCG 2017
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The dual of the set system (V,F) on the ground set V is the set system obtained by
interchanging the roles of V and F . That is, it is the set system (F ,F∗), where the ground
set is F and

F∗ = {{A ∈ F : v ∈ A} : v ∈ V }.

In other words, F∗ is isomorphic to the set system whose ground set is
(
V
k−1
)
, and each set

is a maximal collection of (k − 1)-tuples {S1, . . . , Sp} such that for all i, v ∪ Si ∈ E(H) for
some fixed v. Hence, we have (F∗)∗ = F , and it is known that if F has VC-dimension d,
then F∗ has VC-dimension at most 2d + 1. We say that H = (V,E) has dual VC-dimension
d if F∗ has VC-dimension d.

The main tool used to prove Theorem 1 is an ultra-strong regularity lemma for graphs
with bounded VC-dimension obtained by Lovász and Szegedy [30] and Alon, Fischer, and
Newman [2]. Here, we extend the ultra-strong regularity lemma to uniform hypergraphs.

Given k vertex subsets V1, . . . , Vk of a k-uniform hypergraph H, we write E(V1, . . . , Vk)
to be the set of edges going across V1, . . . , Vk, that is, the set of edges with exactly one vertex
in each Vi. The density across V1, . . . , Vk is defined as |E(V1,...,Vk)|

|V1|···|Vk| . We say that the k-tuple
(V1, . . . , Vk) is ε-homogeneous if the density across it is less than ε or greater than 1− ε. A
partition is called equitable if any two parts differ in size by at most one.

In [30], Lovász and Szegedy established an ultra-strong regularity lemma for graphs
(k = 2) with bounded VC-dimension, which states that for any ε > 0, there is a (least)
K = K(ε) such that the vertex set V of a graph with VC-dimension d has a partition into
at most K ≤ (1/ε)O(d2) parts such that all but at most an ε-fraction of the pairs of parts
are ε-homogeneous. A better bound was obtained by Alon, Fischer, and Newman [2] for
bipartite graphs with bounded VC-dimension, who showed that the number of parts in the
partition can be taken to be (d/ε)O(d). Since the VC-dimension of a graph G is equivalent
to the dual VC-dimension of G, we generalize their result to hypergraphs with the following
result.

I Theorem 3. Let ε ∈ (0, 1/4) and let H = (V,E) be an n-vertex k-uniform hypergraph
with dual VC-dimension d. Then V has an equitable partition V = V1 ∪ · · · ∪ VK with
8/ε ≤ K ≤ c(1/ε)2d+1 parts such that all but an ε-fraction of the k-tuples of parts are
ε-homogeneous. Here c = c(d, k) is a constant depending only on d and k. Moreover, there
is an O(nk) time algorithm for computing such a partition.

Our next result shows that the partition size in the theorem above is tight up to an
absolute constant factor in the exponent.

I Theorem 4. For d ≥ 16 and ε ∈ (0, 1/100), there is a graph G with VC-dimension d such
that any equitable vertex partition on G with the property that all but an ε-fraction of the
pairs of parts are ε-homogeneous, requires at least (5ε)−d/4 parts.

Semi-algebraic graphs vs. graphs with bounded VC-dimension. A semi-algebraic
graph G, is a graph whose vertices are points in Rd and edges are pairs of points that satisfy
a semi-algebraic relation of constant complexity.1 In a sequence of recent works [3, 11, 21],
several authors have shown that classical Ramsey and Turán-type results in combinatorics
can be significantly improved for semi-algebraic graphs.

It follows from the Milnor-Thom theorem (see [31]) that semi-algebraic graphs of bounded
complexity have bounded VC-dimension. Therefore, all results in this paper on properties

1 A binary semi-algebraic relation E on a point set P ⊂ Rd is the set of pairs of points (p, q) from P
whose 2d coordinates satisfy a boolean combination of a fixed number of polynomial inequalities.
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of graphs of bounded VC-dimension apply to semi-algebraic graphs of bounded description
complexity. However, a graph being semi-algebraic of bounded complexity is a much more
restrictive condition than having bounded VC-dimension. In particular, it is known (it
follows, e.g., from [6]) that for each ε > 0 there is a positive integer d = d(ε) such that
the number of n-vertex graphs with VC-dimension d is 2Ω(n2−ε), while the Milnor-Thom
theorem can be used to deduce that the number of n-vertex semi-algebraic graphs coming
from a relation with bounded “description complexity” is only 2O(n logn). Furthermore, it is
known [3] that semi-algebraic graphs have the strong Erdős-Hajnal property, that is, there
exists a constant δ > 0 such that every n-vertex semi-algebraic graph of bounded complexity
contains a complete or an empty bipartite graph whose parts are of size at least δn. This is
not true, in general, for graphs with bounded VC-dimension. In particular, the probabilistic
construction in Section 4 shows the following.

I Theorem 5. For fixed d ≥ 5 and for every sufficiently large n, there is an n-vertex graph
G = (V,E) with VC-dimension at most d with the property that there are no two disjoint
subsets A,B ⊂ V (G) such that |A|, |B| ≥ 4n4/d logn and (A,B) is homogeneous, that is,
either A×B ⊂ E(G) or (A×B) ∩ E(G) = ∅.

It follows from a result of Alon et al. [3] that a stronger regularity lemma holds for semi-
algebraic graphs of bounded description complexity, where all but an ε-fraction of the pairs
of parts in the equitable partition are complete or empty, instead of just ε-homogeneous as
in the bounded VC-dimension case (see [32]). This result was further extended to k-uniform
hypergraphs by Fox et al. [20], and the authors [21] recently showed that it holds with a
polynomial number of parts.

Organization. In the next section, we prove Theorem 3. In Section 3, we prove Theorem 1,
which nearly settles the Erdős-Hajnal conjecture for graphs with bounded VC-dimension. In
Section 4, we prove Theorems 2 and 5. We conclude by discussing a number of other results
for graphs and hypergraphs with bounded VC-dimension. We systemically omit floors and
ceilings whenever they are not crucial for sake of clarity in our presentation. All logarithms
are natural logarithms.

2 Regularity partition for hypergraphs with bounded VC-dimension

In this section, we prove Theorem 3. We start by recalling several classic results on set
systems with bounded VC-dimension. Let F be a set system on a ground set V . The primal
shatter function of F is defined as

πF (z) = max
V ′⊂V,|V ′|=z

|{A ∩ V ′ : A ∈ F}|.

In other words, πF (z) is a function whose value at z is the maximum possible number
of distinct intersections of the sets of F with a z-element subset of V . The dual shatter
function of (V,F), denoted by π∗F , whose value at z is defined as the maximum number of
equivalence classes on V defined by a z-element subfamily Y ⊂ F , where two points x, y ∈ V
are equivalent with respect to Y if x belongs to the same sets of Y as y does. In other words,
the dual shatter function of F is the primal shatter function of the dual set system F∗.

The VC-dimension of F is closely related to its shatter functions. A famous result of
Sauer [33], Shelah [36], Perles, and Vapnik-Chervonenkis [42] states the following.

SoCG 2017



43:6 Erdős-Hajnal conjecture for graphs with bounded VC-dimension

I Lemma 6. If F is a set system with VC-dimension d, then

πF (z) ≤
d∑
i=0

(
z

i

)
.

On the other hand, suppose that the primal shatter function of F satisfies πF (z) ≤ czd for all
z. Then, if the VC-dimension of F is d0, we have 2d0 ≤ c(d0)d, which implies d0 ≤ 4d log(cd).
It is known that if F has VC-dimension d, then F∗ has VC-dimension at most 2d + 1.

Given two sets A1, A2 ∈ F , the symmetric difference of A1 and A2, denoted by A14A2,
is the set (A1 ∪A2) \ (A1 ∩A2). We say that the set system F is δ-separated if for any two
sets A1, A2 ∈ F we have |A14A2| ≥ δ. The following packing lemma was proved by Haussler
in [25].

I Lemma 7. Let F be a set system on a ground set V such that |V | = n and πF (z) ≤ czd
for all z. If F is δ-separated, then |F| ≤ c1(n/δ)d where c1 = c1(c, d).

We will use Lemma 7 and the following lemma to prove Theorem 3.

I Lemma 8. Let 0 < ε < 1/2 and H = (W1 ∪ · · · ∪ Wk, E) be a k-partite k-uniform
hypergraph such that |Wi| = m for all i. If (W1, . . . ,Wk) is not ε-homogeneous, then there
are at least εmk+1 pairs of k-tuples (e, e′), where |e ∩ e′| = k − 1, e ∈ E(H), e′ 6∈ E(H), and
|e ∩Wi| = |e′ ∩Wi| = 1 for all i.

Proof. Let εj be the fraction of pairs of k-tuples (e, e′), each containing one vertex in each
Wi and agree on all vertices except in Wj , and e is an edge and e′ is not an edge. It suffices
to show that ε1 + ε2 + · · ·+ εk ≥ ε.

Pick vertices ai, bi ∈ Wi uniformly at random with repetition for i = 1, 2, . . . , k. For
0 ≤ i ≤ k, let ei = {aj : j ≤ i} ∪ {bj : j > i}. In particular, ek = (a1, . . . , ak) and
e0 = (b1, . . . , bk). Then let X be the event that e0 and ek have different adjacency, that is,
e0 is an edge and ek is not an edge, or e0 is not an edge and ek is an edge. Then we have

Pr[X] ≥ 2ε(1− ε) ≥ ε,

since (W1, . . . ,Wk) is not homogeneous. Let Xi be the event that ei and ei+1 have different
adjacency, and let Y be the event that at least one event Xi occurs. Then by the union
bound, we have

Pr[Y ] ≤ Pr[X0] + Pr[X1] + · · ·+ Pr[Xk−1] = ε1 + ε2 + · · ·+ εk.

On the other hand, if X occurs, then Y occurs. Therefore ε1 + ε2 + · · ·+ εk ≥ Pr[Y ] ≥
Pr[X] ≥ ε, which completes the proof. J

Proof of Theorem 3. Let 0 < ε < 1/2 and H = (V,E) be an n-vertex k-uniform hypergraph
with dual VC-dimension d. For every vertex v ∈ V , let N(v) denote the set of (k − 1)-tuples
S ∈

(
V
k−1
)
such that v ∪ S ∈ E(H). Let F be the set-system whose ground set is

(
V
k−1
)
, and

A ∈ F if and only if A = N(v) for some vertex v ∈ V . Hence F = {N(v) : v ∈ V } has
VC-dimension d. Set δ = ε2

4k2

(
n
k−1
)
. By examining each vertex and its neighborhood one

by one, we greedily construct a maximal set S ⊂ V (H) such that F ′ = {N(s) : s ∈ S} is
δ-separated. By Lemma 7, we have |S| ≤ c1(4k2/ε2)d. Let S = {s1, s2, . . . , s|S|}.

We define a partition Q : V = U1 ∪ · · · ∪ U|S| of the vertex set such that v ∈ Ui if i is
the smallest index such that |N(v)4N(si)| < δ. Such an i always exists, since S is maximal.



J. Fox, J. Pach, A. Suk 43:7

By the triangle inequality, for u, v ∈ Ui, we have |N(u)4N(v)| < 2δ. Set K = 8k|S|/ε.
Partition each part Ui into parts of size |V |/K = n/K and possibly one additional part of
size less than n/K. Collect these additional parts and divide them into parts of size |V |/K
to obtain an equitable partition P : V = V1 ∪ · · · ∪ VK into K parts. The number of vertices
of V belonging to parts Vi that are not fully contained in one part of Q is at most |S||V |/K.
Hence, the fraction of (unordered) k-tuples (Vi1 , . . . , Vik) such that at least one of the parts
is not fully contained in some part of Q is at most k|S|/K = ε/8. Let X denote the set of
unordered k-tuples of parts (Vi1 , . . . , Vik) such that each part is fully contained in a part of
Q (though, in not necessarily the same part) and (Vi1 , . . . , Vik) is not ε-homogeneous.

Let T be the set of pairs of k-tuples (e, e′), such that |e∩e′| = k−1, e ∈ E(H), e′ 6∈ E(H),
|e∩Vij | = |e′ ∩Vij | = 1 for j = 1, 2, . . . , k, and (Vi1 , . . . , Vik) ∈ X. Notice that for (e, e′) ∈ T ,
such that e∩ Vij = b, e′ ∩ Vij = b′, b 6= b′, and Vij lies completely inside a part in Q, we have
|N(b)4N(b′)| ≤ 2δ. Therefore

|T | ≤ K
( n
K

)2
2δ ≤ ε2

2Kk2n
2
(

n

k − 1

)
.

On the other hand, by Lemma 8, every k-tuple of parts (Vi1 , . . . , Vik) that is not ε-
homogeneous gives rise to at least ε(n/K)k+1 pairs (e, e′) in T . Hence |T | ≥ |X|ε(n/K)k+1,
which implies

|X| ≤ (ε/2)
(
K

k

)
.

Thus, the fraction of k-tuples of parts in P that are not ε-homogeneous is at most ε/8+ε/2 < ε,
and K ≤ c(1/ε)2d+1 where c = c(k, d).

Finally, it remains to show that the partition P can be computed in O(nk) time. Given
two vertices s, v,∈ V , we have |N(s)4N(v)| = |N(s)|+ |N(v)| − 2|N(s) ∩N(v)|. Therefore
we can determine if |N(s)4N(u)| < δ in O(nk−1) time. Hence the maximal set S ⊂ V

described above (and therefore the partition Q) can be computed in O(nk) time since |S| ≤ n.
The final equitable partition P requires an additional O(n) time, which gives a total running
time of O(nk). J

We now establish Theorem 4 which shows that the partition size in Theorem 3 is tight
up to an absolute constant factor.

Proof of Theorem 4. Given two vertex subsets X,Y of a graph G, we write eG(X,Y ) for the
number of edges between X and Y in G, and write dG(X,Y ) for the density of edges between
X and Y , that is, dG(X,Y ) = eG(X,Y )

|X||Y | . The pair (X,Y ) is said to be (ε, δ)-regular if for all
X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ δ|X| and |Y ′| ≥ δ|Y |, we have |dG(X,Y )− dG(X ′, Y ′)| ≤ ε.
In the case that ε = δ, we just say ε-regular. We will make use of the following construction
due to Conlon and Fox.

I Lemma 9 ([10]). For d ≥ 16 and ε ∈ (0, 1/100), there is a graph H on n = d(5ε)−d/2e
vertices such that for every equitable vertex partition of H with at most

√
n parts, there are

at least an ε-fraction of the pairs of parts which are not (4/5)-regular.

Let H = (V,E) be the graph obtained from Lemma 9 on n = d(5ε)−d/2e vertices, where
ε ∈ (0, 1/100) and d ≥ 16, and consider a random subgraph G ⊂ H by picking each edge in
E independently with probability p = n−2/d = 5ε. Then we have the following.

SoCG 2017
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I Lemma 10. In the random subgraph G, with probability at least 1 − n−2, every pair of
disjoint subsets X,Y ⊂ V , with |X| ≤ |Y |, satisfy

|eG(X,Y )− p · eH(X,Y )| < √g, (1)

where g = 2|X||Y |2 ln(ne/|Y |).

Proof. For fixed sets X,Y ⊂ V (G), where |X| = u1 and |Y | = u2, let EH(X,Y ) =
{e1, . . . , em}. We define Si = 1 if edge ei is picked and Si = 0 otherwise, and set S =
S1 + · · ·+ Sm. A Chernoff-type estimate (see Theorem A.1.4 in [5]) implies that for a > 0,
Pr[|S − pm| > a] < 2e−2a2/m. Since m ≤ u1u2, the probability that (1) does not hold is
less than 2e−2g/(u1u2). By the union bound, the probability that there are disjoint sets
X,Y ⊂ V (G) for which (1) does not hold is at most

n∑
u2=1

u2∑
u1=1

(
n
u2

)(
n−u2
u1

)
2e−2g/(u1u2) ≤

n∑
u2=1

u2∑
u1=1

(
ne
u2

)u2 (
ne
u1

)u1
2e−2g/(u1u2)

≤
n∑

u2=1

u2∑
u1=1

2
(
ne
u2

)−2u2
≤ n−2.

J

By the analysis in Section 4, the probability that G has VC-dimension at least d+ 1 is at
most (

n

d+ 1

)
n2d+1

p(d+1)2d ≤ nd+1n−2d+1/d <
1
10 ,

since d ≥ 16. Therefore, the union bound implies that there is a subgraph G ⊂ H such that
G has VC-dimension at most d, and every pair of disjoint subsets X,Y ⊂ V , with |X| ≤ |Y |,
satisfy

|eG(X,Y )− p · eH(X,Y )| <
√

2|X||Y |2 ln(ne/|Y |). (2)

We will now show that for every equitable vertex partition of G into fewer than
√
n =

(5ε)−d/4 parts, there are at least an ε-fraction of the pairs of parts which are not ε-homogenous.
Let P be a equitable partition on V into t parts, where t <

√
n = (5ε)−d/4. By Lemma

9, there are at least ε
(
t
2
)
pairs of parts in P which are not (4/5)-regular in H. Let (X,Y )

be such a pair. Then there are subsets X ′ ⊂ X and Y ′ ⊂ Y such that |X ′| ≥ 4|X|/5,
|Y ′| ≥ 4|Y |/5, and

|dH(X,Y )− dH(X ′, Y ′)| ≥ 4/5.

Moreover, by (2), we have

|eG(X,Y )− p · eH(X,Y )| ≤
√

2
(n
t

)3/2
ln(te) ≤

√
2 ln(te)
n1/4 (n/t)2.

Since d ≥ 16 and ε ∈ (0, 1/100), this implies

|eG(X,Y )− p · eH(X,Y )| ≤ (5ε)2√2 ln(te)(n/t)2 ≤ ε

4(n/t)2.

Hence |dG(X,Y )− p · dH(X,Y )| ≤ ε/4. Therefore we have



J. Fox, J. Pach, A. Suk 43:9

|dG(X ′, Y ′)− dG(X,Y )| ≥ p · |dH(X ′, Y ′)− dH(X,Y )| − 2ε4 ≥ 4ε− ε

2 > 3ε.

Finally, it is easy to see that (X,Y ) is not ε-homogeneous in G. Indeed if (X,Y ) were
ε-homogeneous, then we have either dG(X,Y ) < ε or dG(X,Y ) > 1− ε. In the former case
we have dG(X ′, Y ′) > 3ε, which implies

eG(X,Y ) ≥ eG(X ′, Y ′) > 3ε4|X|
5

4|Y |
5 > ε|X||Y |,

contradiction. In the latter case, we have d(X ′, Y ′) < 1− 3ε, and a similar analysis shows
that eG(X,Y ) < (1− ε)|X||Y |, contradiction.

Thus, any equitable vertex partition on G such that all but an ε-fraction of the pairs of
parts are ε-homogeneous, requires at least (5ε)−d/4 parts. J

3 Proof of Theorem 1

The family G of all complement reducible graphs, or cographs, is defined as follows: The graph
with one vertex is in G, and if two graphs G,H ∈ G, then so does their disjoint union, and
the graph obtained by taking their disjoint union and adding all edges between G and H.
Clearly, every induced subgraph of a cograph is a cograph, and it is well known that every
cograph on n vertices contains a clique or independent set of size

√
n.

Let fd(n) be the largest integer f such that every graph G with n vertices and VC-
dimension at most d has an induced subgraph on f vertices which is a cograph. Cographs
are perfect graphs, so that Theorem 1 is an immediate consequence of the following result.

I Theorem 11. For any δ ∈ (0, 1/2) and for every integer d ≥ 1, there is a c = c(d, δ) such
that fd(n) ≥ ec(logn)1−δ for every n.

Proof. For simplicity, let f(n) = fd(n). The proof is by induction on n. The base case n = 1
is trivial. For the inductive step, assume that the statement holds for all n′ < n. Let δ > 0
and let G = (V,E) be an n-vertex graph with VC-dimension d. We will determine c ∈ (0, 1)
later.

Set ε = (1/32)e−3c(logn)1−δ . We apply Theorem 3 to obtain an equitable partition
P : V = V1 ∪ · · · ∪ VK into at most K ≤ ε−c4 parts, where c4 = O(d), such that all but an
ε-fraction of the pairs of parts are ε-homogeneous. We call an unordered pair of distinct
vertices (u, v) bad if at least one of the following holds:

1. (u, v) lie in the same part, or
2. u ∈ Vi and v ∈ Vj , i 6= j, where (Vi, Vj) is not ε-homogeneous, or
3. u ∈ Vi and v ∈ Vj , i 6= j, uv ∈ E(G) and |E(Vi, Vj)| < ε|Vi||Vj |, or
4. u ∈ Vi and v ∈ Vj , i 6= j, uv 6∈ E(G) and |E(Vi, Vj)| > (1− ε)|Vi||Vj |.

By Theorem 3, the number of bad pairs of vertices in G is at most

K

(
n/K

2

)
+
( n
K

)2
ε

(
K

2

)
+ ε

( n
K

)2
(1− ε)

(
K

2

)
≤ 2ε

(
n

2

)
.

By Turán’s Theorem, there is a subset R ⊂ S of at least 1
4ε vertices such that R

does not contain any bad pairs. This implies that all vertices of R are in distinct parts
of P. Furthermore, if uv are adjacent in R, then the corresponding parts Vi, Vj satisfy

SoCG 2017



43:10 Erdős-Hajnal conjecture for graphs with bounded VC-dimension

|E(Vi, Vj)| ≥ (1− ε)|Vi||Vj |, and if uv are not adjacent, then we have |E(Vi, Vj)| < ε|Vi||Vj |.
Since the induced graph G[R] has VC-dimension at most d, G[R] contains a cograph U0 of
size t = f(1/(4ε)), which, by the induction hypothesis, is a set of size at least ec(log(1/4ε))1−δ .
Without loss of generality, we denote the corresponding parts of U0 as V1, . . . , Vt. Each part
contains n/K vertices.

For each vertex u ∈ V1, let db(u) denote the number of bad pairs uv, where v ∈ Vi
for i = 2, . . . , t. Then there is a subset V ′1 ⊂ V1 of size n

2K , such that each vertex u ∈ V ′1
satisfies db(u) < 8tε(n/K). Indeed, otherwise at least n/(2K) vertices in V1 satisfies
db(u) ≥ 8tε(n/K), which implies

n

2K
8tεn
K
≤
∑
u∈V ′1

db(u) ≤
∑
u∈V1

db(u) ≤ ε(t− 1)
( n
K

)2
,

and hence a contradiction. By the induction hypothesis, we can find a subset U1 ⊂ V ′1 such
that the induced subgraph G[U1] is a cograph of size f(n/(2K)). If the inequality

f
( n

2K

)
8tε n

K
>

n

4tK
is satisfied, then we have

f3(n) ≥ f
( n

2K

)
t2 >

1
32ε .

By setting ε such that 1
ε = 32e3c(logn)1−δ , we have f(n) ≥ ec(logn)1−δ and we are done.

Therefore, we can assume that

f
( n

2K

)
8tε n

K
≤ n

4tK .

Hence, by deleting any vertex v ∈ V2 ∪ · · · ∪ Vt that is in a bad pair with a vertex in U1, we
have deleted at most n

4tK vertices in each Vi for i = 2, . . . , t.
We repeat this entire process on the remaining vertices in V2, . . . , Vt. At step i, we will

find a subset Ui ⊂ Vi that induces a cograph of size

f
( n

2K − i
n

4Kt

)
≥ f

( n

4K

)
,

and again, if the inequality

f
( n

4K

)
8tε n

K
>

n

4tK
is satisfied, then we are done by the same argument as above. Therefore we can assume
that our cograph G[Ui] has the property that there are at most n/(4tK) bad pairs between
Ui and Vj for j > i. At the end of this process, we obtain subsets U1, . . . , Ut such that the
union U1 ∪ · · · ∪ Ut induces a cograph of size at least tf

(
n

4K
)
. Therefore we have

f(n) ≥ f
( 1

4ε
)
f
(
n

4K
)

≥ f
(
e3c(logn)1−δ

)
f
(
elogn−c·c5(logn)1−δ

)
≥ ec(3c(logn)1−δ)1−δ

ec(logn−c·c5(logn)1−δ)1−δ
,

(3)
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where c5 = c5(d). Notice we have the following estimate:

(
logn− c · c5(logn)1−δ)1−δ = (logn)1−δ

(
1− c·c5

logδ n

)1−δ

≥ (logn)1−δ
(

1− c·c5
(logn)δ

)
≥ (logn)1−δ − c · c5(logn)1−2δ.

(4)

Plugging (4) into (3) gives

f(n) ≥ ec(3c(logn)1−δ)1−δ
· ec(logn)1−δ−c2·c5(logn)1−2δ

= ec(logn)1−δ · e
(

31−δc2(logn)1−2δ+δ2
−c2c5(logn)1−2δ

)
.

(5)

The last inequality follows from the fact that c < 1. Let n0 = n0(d, δ) be the minimum
integer such that for all n ≥ n0 we have

31−δ(logn)1−2δ+δ2
− c5(logn)1−2δ ≥ 0.

We now set c = c(d, t) to be sufficiently small such that the statement is trivial for all n < n0.
Hence we have f(n) ≥ ec(logn)1−δ for all n. J

4 Random constructions

Here we prove Theorems 2 and 5. The proof of Theorem 2 uses the Lovász Local Lemma
[17] in a similar manner as Spencer [38] to give a lower bound on Ramsey numbers.

I Lemma 12 (Lovász Local Lemma). Let A be a finite set of events in a probability space. For
A ∈ A let Γ(A) be a subset of A such that A is independent of all events in A\ ({A}∪Γ(A)).
If there is a function x : A → (0, 1) such that for all A ∈ A,

Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B)),

then Pr
[⋂

A∈AA
]
≥
∏
A∈A

(1− x(A)). In particular, with positive probability no event in A

holds.

Proof of Theorem 2. Let s and d be positive integers such that d > s+2. Let G(n, p) denote
the random graph on n vertices in which each edge appears with probability p independently
of all the other edges, where p = n−2/(s+1) and n is a sufficiently large number. For each set
S of s vertices, let AS be the event that S induces a complete graph. For each set T of t
vertices, let BT be the event that T induces an empty graph. Clearly, we have Pr[AS ] = p(

s
2)

and Pr[BT ] = (1− p)(
t
2).

For each set D of d vertices, let CD be the event that D is shattered. Then
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Pr[CD] ≤
∏

W⊂D
Pr[∃v ∈ V (G) : N(v) ∩D = W ]

=
∏

W⊂D

(
1−

(
1− p|W |(1− p)d−|W |

)n)

=
d∏
j=0

(
1−

(
1− pj(1− p)d−j

)n)(dj)
≤

d∏
j=1

(
n · pj(1− p)d−j

)(dj) ≤ d∏
j=1

n(dj) · pj(
d
j) ≤ n2d · pd2d−1

.

Next we estimate the number of events dependent on each AS , BT and CD. Let S ⊂ V
such that |S| = s. Then the event AS is dependent on at most

(
s
2
)(

n
s−2
)
≤ s2ns−2 events

AS′ , where |S′| = s. Likewise, AS is dependent on at most
(
n
t

)
events BT where |T | = t.

Finally AS is dependent on at most
(
s
2
)(

n
d−2
)
≤ s2nd−2 events CD where |D| = d.

Let T ⊂ V be a set of vertices such that |T | = t. Then the event BT is dependent on at
most

(
t
2
)(

n
s−2
)
≤ t2ns−2 events AS where |S| = s. Likewise, BT is dependent on at most

(
n
t

)
events BT ′ where |T ′| = t. Finally BT is dependent on at most

(
t
2
)(

n
d−2
)
≤ t2nd−2 events

CD where |D| = d.
Let D ⊂ V be a set of vertices such that |D| = d. Then the event CD is dependent on

at most
(
d
2
)(

n
s−2
)
≤ d2ns−2 events AS where |S| = s. Likewise, CD is dependent on at most(

n
t

)
events BT where |T | = t. Finally CD is dependent on at most

(
d
2
)(

n
d−2
)
≤ d2nd−2 events

CD′ where |D′| = d.
By Lemma 12, it suffices to find three real numbers x, y, z ∈ (0, 1) such that

p(
s
2) ≤ x(1− x)s

2ns−2
(1− y)(

n
t)(1− z)s

2nd−2
, (6)

(1− p)(
t
2) ≤ y(1− x)t

2ns−2
(1− y)(

n
t)(1− z)t

2nd−2
, and (7)

n2d · pd2d−1
≤ z(1− x)d

2ns−2
(1− y)(

n
t)(1− z)d

2nd−2
. (8)

Recall p = n
−2
s+1 , s ≥ 3, and d > s + 2. We now set t = c1n

2
s+1 (logn), x = c2n

−2(s2)
s+1 ,

y = e−c3n
2
s+1 (logn)2 , and z = c4n

2d− 2
s+1d2d−1

, where c1, c2, c3, c4 only depend on s and d. By
letting c1 > 10c3, setting c1, c2, c3, c4 sufficiently large, an easy (but tedious) calculation
shows that (6), (7), (8) are satisfied when n is sufficiently large. By Lemma 12, there is an
n-vertex Ks-free graph G with VC-dimension at most d and independence number at most
c1n

2
s+1 logn. J

Proof of Theorem 5. Let d ≥ 5 and n be a sufficiently large integer. Consider the random
n-vertex graph G = G(n, p), where each edge is chosen independently with probability
p = n−4/d. As n is sufficiently large, the union bound and the analysis above implies that
the probability that G has VC-dimension at least d is at most 1/3.
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Let A,B ⊂ V (G) be vertex subsets, each of size k. The probability that (A,B) is
homogenous is at most

pk
2

+ (1− p)k
2
≤ n−4k2/d + e−n

−4/dk2
.

The probability that G contains a homogeneous pair (A,B), where |A|, |B| = k, is at most(
n

k

)(
n− k
k

)(
n−4k2/d + e−n

−4/dk2
)
< 1/3,

for k = 4n4/d logn and n sufficiently large. Thus, again by the union bound, there is a graph
with VC-dimension less than d, with no two disjoint subsets A,B ⊂ V (G) such that (A,B)
is homogeneous and |A|, |B| = 4n4/d logn. J

5 Concluding remarks

Many interesting results arose in our study of graphs and hypergraphs with bounded VC-
dimension. In particular, we strengthen several classical results from extremal hypergraph
theory for hypergraphs with bounded VC-dimension. Below, we briefly mention two of them.

Hypergraphs with bounded VC-dimension. Erdős, Hajnal, and Rado [16] showed
that every 3-uniform hypergraph on n vertices contains a clique or independent set of size
c log logn. A famous open question of Erdős asks if log logn is the correct order of magnitude
for Ramsey’s theorem for 3-uniform hypergraphs. According to the best known constructions,
there are 3-uniform hypergraphs on n vertices with no clique or independent set of size
c′
√

logn. For k ≥ 4, the best known lower and upper bounds on the size of the largest clique
or independent set in every n-vertex k-uniform hypergraph is of the form c log(k−1) n (the
(k − 1)-times iterated logarithm) and c′

√
log(k−2) n, respectively (see [12] for more details).

By combining Theorem 1 with an argument of Erdős and Rado [18], one can significantly
improve these bounds for hypergraphs of bounded (neighborhood) VC-dimension.

I Theorem 13. Let k ≥ 3 and d ≥ 1. Every k-uniform hypergraph on n vertices with
VC-dimension d contains a clique or independent set of size e(log(k−1) n)1−o(1)

.

Geometric constructions given by Conlon et al. [11] show that Theorem 13 is tight apart
from the o(1) term in the second exponent. That is, for fixed k ≥ 3, there are k-uniform
hypergraphs on n vertices with VC-dimension d = d(k) such that the largest clique or
independent set is of size O(log(k−2) n).

The Erdős-Hajnal conjecture for tournaments. A tournament T = (V,E) on a set V
is an orientation of the edges of the complete graph on the vertex set V , that is, for u, v ∈ V
we have either (u, v) ∈ E or (v, u) ∈ E, but not both. A tournament with no directed cycle
is called transitive. If a tournament has no subtournament isomorphic to T , then it is called
T -free. An old result due to Entringer, Erdős, and Harner [13] and Spencer [39] states that
every tournament on n vertices contains a transitive subtournament of size c logn, which is
tight apart from the value of the constant factor. Alon, Pach, and Solymosi [4] showed that
the Erdős-Hajnal conjecture is equivalent to the following conjecture.

I Conjecture 14. For every tournament T , there is a positive δ = δ(T ) such that every T -free
tournament on n vertices has a transitive subtournament of size nδ.
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In particular, it is known that every T -free tournament on n vertices contains a transitive
subtournament of size ec

√
logn, where c = c(T ). Another application of the ultra-strong

regularity lemma, Theorem 3, improves this bound in the special case where T = (V,E) is
2-colorable, that is, there is a 2-coloring of V (T ) such that each color class induces a transitive
subtournament. This follows from the fact that, if T is 2-colorable, then the set system
formed by the out-neighborhoods of the vertices of a T -free tournament has VC-dimension
at most c′ = c′(T ). On the other hand, if the same set system has bounded VC-dimension,
then the tournament is T ′-free for some bounded size 2-colorable T ′.

I Theorem 15. For a fixed integer k > 0, let T be a 2-colorable tournament on k vertices.
Every T -free tournament on n vertices contains a transitive subtournament of size e(logn)1−o(1) .
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